
evm8: an embedded 8/16 bits virtual machine.
Sebastien Lorquet, F4GRX

2010 – 2012
version B3

Révisions
Révision Date Description
B3 2012-06-XX When no kernel module is loaded, the default app starts in user

mode.
Stack pointer clarifications. Remove SP, keep USP and SSP.

B2 2012-06-04 Clarifications in memory management
Instruction encoding table completion
Started description of each instruction
Submitted for review.

B1 Somewhere in
2010

Initial developments and concepts

Introduction
The goal is to define an embedded machine that can execute code on different 8-bits
architectures, as well as on custom hardware CPUs, such as an FPGA implementations.
Requirements are:
-Simplicity
-Speed
-Low VM footprint
-Dynamic library/module management
-Optimal execution on 8 bits micro architectures such as PIC, AVR, HC11 and MCS51.

System architecture

CPU
The processor has an Harvard architecture, with 3 separate data spaces:

– The code space holds executable instructions and constant data (TXT et CST);
– The data space holds the stack and module data (BSS and DAT);
– The IO space holds peripheral control/status registers.

The code is organized in executable modules, loaded by the VM loader, which is system
dependent.
The processor has 2 states, allowing different kinds of privileges: a supervisor mode, and an
user mode. The supervisor mode can do I/O operations, while the user mode cannot.

Memory
The internal address paths are 24-bit wide. The data paths are 8-bit wide.
The Code space is a global non volatile memory array. A small part of this memory holds the
module registry. The remaining space can be used to store executable modules. A best fit
strategy and/or a defragmentation method can be used to allocate memory, provided that the

module registry is properly updated. No specific alignment is required, since this memory may
not be directly addressable central memory, but rather an external memory storage device.
This device shall provide random byte read operations. The code space also stores constant
data information.
The data space is volatile memory allocated to the executable module. It is also a global
memory pool. At load time, each module is allocated a start address for its BSS and initialized
DATA variables, that points to the beginning of a memory zone usable for the module. Within
the code, BSS variables are targeted using a zero based offset, which is added to the VM-
managed BSS address for this module. In user modes, BSS accesses are checked so that any
module cannot use memory that does not pertain to the same module.

Execution context
One or more execution context can be active at once to support single or multithreading.
Scheduling and stack allocation are not defined yet.
An execution context stores the volatile information for the currently running thread, including
the current module being executed, and all registers, including PC and SP.
The maximum number of contexts (threads or tasks) that can exist in the machine can be fixed
or dynamic.

Modules
Code is organized into modules. Modules can be programs and libraries.
Each module can only access the opcodes that are stored in the same module. The PC register
is 16-bits wide and is range checked against the current module. The module load address, and
the fact that this physical address is wider than the user available PC is unknown to the code.
This ensures that no code can be fetched from outside the module. Instead, code from other
modules may be called via import and export tables.

Module registry
Executable modules are designed to be position independent, so that they can be loaded and
unloaded at any time in the system lifetime, without relying on the load address. A module can
hold a maximum of 65536 code bytes.
All modules have a name, that can be 8 bytes long. These bytes are not required to be ascii
characters. Trailing zero bytes are used for padding.
Any module can export functions. This is a list of program counter offset values that mark
exported functions, indexed by a 16-bit number.

Non volatile (NV) module registry
The NV Module registry is a table, holding permanent management information about modules.
This table is system dependent, and should contain a minimal set of fields to allow localization
of the modules inside the system NV memory and holding modules attributes:

– module name (8 bytes)
– module position in memory (system dependent, typically 3 bytes)
– flags (at least 8 bits or one byte)

The flags are defined as follows:

B7 B6 B5 B4 B3 B2 B1 B0 Description
- - - - - - - 1 Default application. This module will be run on

machine boot.
- - - - - - 1 - Kernel module. This module has interrupt

handlers.
0 0 0 0 0 0 - - RFU, must be set to zero.

There can only be one kernel module and one default application.

Volatile module registry
A memory zone is dedicated to store volatile information about modules. This includes the BSS
start address.

Boot process
At startup, the VM does the following:

– Define the top of the supervisor stack at address 128. This can be changed if a bigger
supervisor stack is required.

– Affect a BSS RAM block for each loaded module, and save their address in the volatile
module registry.

– The top of the user stack is defined at the very end of the memory. This allows runtime
loading and activation of more code modules, provided that the necessary BSS memory
is still available. The SSP and USP registers are cleared.

– if a kernel module is installed, it is executed in supervisor mode. It MUST returns or
nothing more will happen. This feature is enabled to setup the system before any
application is run.
– if a default module is installed, the default module is executed in user mode.
– else, the system is put in SLEEP mode.

– If there is no kernel module
– if a default module is installed, the default module is executed in user mode.
– Else, the system is halted.

Exceptions
When special conditions are met, such as cpu /stack errors, an exception is generated.
If no kernel module is defined, the system reboots.
Else, the exported function for the exception is searched. If no exported function exists, the
system reboots.
If an exception function is found, supervisor mode is entered, then the function is executed.
Trap vectors are user-triggered exceptions, that can be used to enter supervisor mode from
user mode under software control.

Entry point Kernel exported function number
Division by zero 0
Bad instruction 1
Address error (tried to jump in the wild) 2
Stack under/overflow 3
Module not found 4
Trap #0 16
Trap #16 31
Interrupt #n 32

General purpose registers
The machine has 8 registers named R0-R7, each one is 8 bits wide.
When the D bit of an instruction is set, the operation operates on register pairs. In this case the

least significant bit of the register number is set to zero and the operation uses registers N and
N+1 (modulo 8) to perform the operation. N has to be even.

R0 R1 R2 R3 R4 R5 R6 R7
W0 W2 W4 W6

Stack
The stack registers have 16 bits, but the available memory can be bigger than that. The real
stack address is computed using an internal “top of stack” register that is big enough to target
the full address space, to which the user available stack pointer is added. This allows a full 16-
bit stack to be used.
The top of stack pointers are saved by the VM but are not available to the user. Instead, the
SSP and USP registers are zero based, and the real memory is made by substracting the
contents of the current SP register from the real stack address. In the same time, stack
over/underflows are checked and reported.
PUSH is postinc, POP is predec. For the user, the stack addresses start at zero and grow when
pushing data. In real memory however, the stack addresses start at the highest possible
adresses (top of stack) and shrink as data is pushed.
When the SM bit in the Processor Status Register is set, and not using an index, any LOAD or
STORE instruction requesting access from the USP/SSP register will alter the USP/SSP register
as expected from this stack definition. When another register is used, or when USP/SSP is used
with an index, or when the SM bit is not set, the register used to read memory will not be
altered.
In this mode, loading or storing a byte register will change the SP value by one, but if the W bit
of the load/store instruction is set, then SP will be changed by two.

Special registers
The CPU has special registers, usable only in bitwise , MOVE and LOAD/STORE instructions.

Register Numeric
encoding

Size in bits Description

PC 0 0 0 16 Instruction pointer, 16 bits wide within a module,
SSP 0 0 1 16 In supervisor mode, this is the Supervisor stack pointer,

16 bits wide. In user mode it is forbidden to use this
register.

USP 0 1 0 16 User mode stack pointer
FP 0 1 1 16 Frame pointer or generic 16 bits pointer if not used
AS 1 0 0 8 ALU Status register, 8 bits, holds arithmetic and logic

CPU state bits. Available in all modes.
PS 1 0 1 8 Processor Status register, 8 bits, holds system CPU

state bits. Only available in supervisor mode.
CM 1 1 0 8 Current module (read only). Used to compute the real

instruction address in conjuction with module table and
PC.

ALU Status register bits:

B0 Z Last result was zero
B1 C Last result produced a carry
B2 N Last result was negative
B3 V Last result overflowed
B4 0

Always read as zero, writes
discarded

B5 0
B6 0
B7 0

Processor Status bits:

B0 M Processor mode
(0=user, 1=supervisor)

B1 T Trace/ Single step
B2 I Global Interrupt enable

B3 B Endianess control (0=LE,
1=BE)

B4 SM Stack mode enable
(0=disabled, 1=enabled)

B5 0
Always read as zero, writes

discardedB6 0
B7 0

The processor status bits cannot be read nor written in user mode. They have to be changed by
the kernel module or default application.

IO space
IO peripherals are abstracted from the underlying architecture. A number of peripheral may be
accessed in a platform independent way, using descriptors.
At the beginning of the IO space, a number of read-only IO descriptors are stored. A descriptor
is TLV coded, or Tag Length Value. The tag indicates the peripheral type, the length indicates
the descriptor length, and value describes the peripheral registers. This encoding allows fast
peripheral enumeration.
These tags are registered:

Tag Length Value
0x00 0 End of list. This is the last tag of the list.
0x01 2 Serial port. Tag contents is encoded like this:

- 2 bytes: I/O port address base

Instructions table
Instructions are 1-4 bytes wide.

RD = destination register
RS = source register
MD, MS = register access mode. 0= GP register, 1=special register
S, SD, SS = double register access. 0=use 8-bit registers, 1=use RN and RN+1 as a 16-bit
register

Y = carry/borrow (for add, sub, rot, shift). 0=do not use carry/borrow, 1=use carry/borrow
LR = left (0) or right (1) for shift and rotate.
Ind = use 8-bit signed index constant (in following byte)
C = index length 0=8 bits index, 1=16 bits index
W=wide access: read/write 16 bits at once with load/store, use a 16-bit constant in load/store,
a 16 bits displacement in Bcc, wide multiplication/division result
C = Litteral Constant
Cc = condition code
D = Displacement, 8 bits signed (or 16 bits signed if W=1)
L=Link. 0=Just goto, 1=Push return address before jump
Dir = direction, 0=load/in 1=store/out

load RA, ind(RB) means mem[RB+ind] → RA

Condition codes:

0 0 0 always
0 0 1 Z (EQ)
0 1 0 NZ (NE)
0 1 1 GT
1 0 0 LT
1 0 1 GE
1 1 0 LE
1 1 1 None (RFU)

First byte (@N) Second byte (@N+1)
Description Data

B7 B6 B5 B4 B3 B2 B1 B0 B7 B6 B5 B4 B3 B2 B1 B0
0 0 0 0 0 0 0 0 N/A NOP --
0 0 0 0 0 0 0 1 N/A RET --
0 0 0 0 0 0 1 0 N/A RETI --
0 0 0 0 1 RD 0 0 S MD MS RS MOV --
0 0 0 0 1 RD 0 1 S MD MS RS XOR --
0 0 0 0 1 RD 1 0 S MD MS RS AND --
0 0 0 0 1 RD 1 1 S MD MS RS OR --
0 0 0 1 0 RD Y 0 S 0 0 RS ADD(C) --
0 0 0 1 0 RD Y 1 S 0 0 RS SUB(B) --
0 0 0 1 1 RD 0 0 S 0 0 RS TEST --
0 0 0 1 1 RD 0 1 S 0 0 RS SWAP --
0 0 0 1 1 RD 1 0 SD W SS RS MUL --
0 0 0 1 1 RD 1 1 SD W SS RS DIV --
0 0 1 0 0 RD Y 0 SD LR SS RS SHIFT --
0 0 1 0 0 RD Y 1 SD LR SS RS ROT --
0 0 1 0 1 RD Y 0 SD LR Bits SHIFTC --
0 0 1 0 1 RD Y 1 SD LR Bits ROTC --
0 0 1 1 0 RD 0 0 SD MD SS Rn CLRB --
0 0 1 1 0 RD 0 1 SD MD Bits CLRBC --
0 0 1 1 0 RD 1 0 SD MD SS Rn SETB --
0 0 1 1 0 RD 1 1 SD MD Bits SETBC --
0 0 1 1 1 RD 0 0 0 MD SD Rn TESTB --
0 0 1 1 1 RD 0 1 0 MD Bits TESTBC --
0 0 1 1 1 0 0 0 1 0 0 0 0 RD SEXT --
0 0 1 1 1 0 0 0 1 0 S 0 1 RD CMPL --
0 0 1 1 1 0 0 0 1 0 S 1 0 RD JSR --
0 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 RESET --
0 0 1 1 1 0 0 0 1 0 0 1 1 0 0 1 SLEEP --
0 0 1 1 1 0 0 0 1 1 0 1 Num TRAP --
0 1 0 0 0 0 0 0 Val S RD ADDQ --
0 1 0 0 0 0 0 1 Val S RD SUBQ --
0 1 0 0 0 0 1 0 Val S RD MULQ
0 1 0 0 0 0 1 1 ImpTableIndex LIBCALLX FuncNo
0 1 0 0 0 1 FnHi ImpTableindex FuncNo LIBCALL --
0 1 1 Ind W RD C Dir DB MD MS RS LOAD/STORE (Index)
1 0 0 Ind W RD C Dir DB MD MS RS IOCTL (index)
1 0 1 MD W RD C-LSB MOVC C-MSB
1 1 0 MD W RD C-LSB TESTC C-MSB
1 1 1 L W Cc D-LSB Bcc D-MSB

Instructions description
The global syntax is : OPERAND DESTINATION, SOURCE

ADD, ADDC
Same encoding as MOVE, except operation is

Y=0: RS + RD → RD
Y=1: RS + RD + C → RD

Then,
If RD=0, set Z
(TODO trouver les équations des autres flags)

Affected flags: Z C N V

ADDQ
Add a small value to a register

AND
Same encoding as MOVE, except operation is
RS AND RD → RD

Bcc
Branch (and link) if condition is verified. This is a relative jump. For absolute jumps within a
module, use JSR.

CLRB,CLRBC
Clear a bit. Bit index in register or in constant.

CMPL!
Compute two's complement.

SD=0: (RS XOR 0xFF) +1 → RD
SD=1: (WS XOR 0xFFFF) +1 → WD

DIV
Divide registers

IOCTL
Access I/O memory

JSR
Jump to subroutine using a register. This stores the address just after this instruction on the
stack, then loads the contents of register RD or WD in PC.
There is no JMP instruction because this one is a simple alias to MOV PC, Wn

LIBCALL
Call a function in another module via this module's import table. This compact version can be
used to access the first 64 functions of the first 16 imported libraries

LIBCALLX
Call a function in another module via this module's import table. This version is not restricted to
16 libs or 64 functions.

LOAD
Retrieve memory contents. Used for stack and pointer dereference. The indexed version is
useful for struct access.

MOV
Assembly syntax MOVE RD, RS
Effect RS → RD

Copy the contents of a register to another
register.

Affected flags None
Instruction length 2 bytes
Encoding Byte 1

0 0 0 0 1 RD

Byte 2
0 0 SZ MD MS RS

RD: destination register number
RS: source register number
S: operation size.

S=0: operate on 8-bit registers
S=1: operate on 16-bit register pair

MD: dest register mode
MS:source register mode

Mx=0: Normal register set
Mx=1: Special register set

--

MOVC
Move a constant value in a register

MUL
Multiply registers

MULQ
Multiply a register by a small integer

NOP
Assembly syntax NOP
Effect Performs no operation. The instruction

encoding matches the memory erased state.
Affected flags None
Instruction length 1 byte
Encoding Byte 1

0 0 0 0 0 0 0 0

OR
Same encoding as MOVE, except operation is
RS OR RD → RD

RESET
Cancel all execution and restart runtime environment

RET
Normal return from subroutine

RETI
Return from subroutine, also restores the processor status register. Used to exit the supervisor
mode.

ROT, ROTC
Rotate the contents of a register, optionally through carry. Number of places is in a register or
in a constant.

SETB,SETBC
Set a bit. Bit index in register or in constant.

SEXT
Sign extend 8-bit register to 16-bit

RN[7]=0: 0x00 || RN → WN
RN[7]=1: 0xFF || RN → WN

SHIFT, SHIFTC
Shift contents of a register, optionally through carry. Number of places is in a register or in a
constant.

SLEEP
Go into low power mode until an interrupt wakes the processor.

STORE
Transfer the contents of a register into memory.

SUB, SUBB
Same encoding as MOVE, except operation is

Y=0: RS – RD → RD
Y=1: RS – RD – C → RD

Affected flags: Z C N V

SWAP
Same encoding as MOVE, except operation is

S=0: swap nibbles in 8-bit register RS and store in RD
S=1: swap contents of registers RS and RD

TEST
Same encoding as MOVE, except operation is

Y=0: Compute RS – RD
Y=1: Compute RS – RD – C

Do not update RD
Update flags
Affected flags: Z C N V

TESTC
Test a register against a constant

TESTQ
Test a register against a small constant

TESTB,TESTBC
Test a bit. Bit index in register or in constant. Result in Zero, so that BNE/BEQ can be used to
jump. Just like AND, but can accept a constant and does not alter the tested register.

TRAP
Switch to supervisor mode while calling into the kernel.

XOR
Same encoding as MOVE, except operation is
RS XOR RD → RD

Assembly syntax

Instructions
The syntax for each instruction is detailed in the instruction's descriptions.

Symbols
Valid symbols are matching the regex: [A-Za-z][A-Za-z0-9]*, maximum length is 64 bytes.

Symbols are either code addresses or data symbols.
Evm8 is a load store machine, a symbol is an address. Unlike with 68k , there is no “LEA”
instruction, because this is what movc does:

movc R0, label
does not mean: mem[label] → R0
but rather : label → R0
The 68k instruction move.b label, d0 requires 2 evm8 instructions:

movc R1, label ; label → R1
load R0, R1 ; mem[R1] → R0
load R0, 3(R1) ; mem[R1+3] → R0

Directives
Directives are commands that do not lead directly to binary code, instead they change the
behaviour of the assembler.

.module Define executable module name. Only allowed once.

.equ SYM, VAL Define a constant SYM with value VAL.

.include ”path” Include an external file at this point

.xdef SYM Mark symbol SYM as being global (visible by other files)

.global SYM Alias for .xdef

.text [NAME] Following data and code will go in the (possibly named) code section

.rodata [NAME] Following data will go into the (possibly named) rodata section

.data [NAME] Following data will go into the (possibly named) initialized data section

.bss [NAME] Following data will go in the (possibly named) bss section

.db VAL [,VAL]+

.byte
Store a byte verbatim

.dw VAL[,VAL]+

.word
Store a word (2 bytes) verbatim

.dl VAL[,VAL]+

.long
Store a long word (4 bytes) verbatim

.ds VAL

.space
Store a number of zero bytes

.asciiz “VAL” Store a null terminated string

In the future we will also support .macro … .endmacro

Instructions
Source lines can be
-empty lines
-comment lines, starting by any of: # ! ; @ //
-a directive
-an instruction

Executable format
To allow efficient and modular execution, a specific executable format is defined.
There is no difference between libraries and programs. A library is a program with entry points,

whose only executable instruction is « RET ».

Offset Length Description
0 8 Module name: a 8 bytes identifier for the library or program,

preferably ASCII but not required.
8 2 BSS SIZE: the number of bytes that must be allocated for this

program.
10 1 Code size: the number of code bytes
12 1 Import table size: the number of imported libraries.
14 1 Export table size: the number of exported functions.
14 8*n Names of imported libs: 8 bytes per name
14+8*n 2*p Exported Pcs: 2 bytes per entry point
14+8*n+2*p 2 Reserved, must be 0x0000
16+8*n+2*p C Code bytes

Relocatable format

Format
A specific relocatable object format has been defined to allow linking of multiple object files in a
single binary program or library.,
Relocatable files format is as follows:

Offset Length Description
0 4 Magic « REL8 »
4 2 Exported symbols count
6 2 Relocation count

Relocations
Relocations are of several types
-
todo

	Révisions
	Introduction
	System architecture
	CPU
	Memory
	Execution context
	Modules
	Module registry
	Non volatile (NV) module registry
	Volatile module registry

	Boot process
	Exceptions
	General purpose registers
	Stack
	Special registers
	IO space
	Instructions table

	Instructions description
	ADD, ADDC
	ADDQ
	AND
	Bcc
	CLRB,CLRBC
	CMPL!
	DIV
	IOCTL
	JSR
	LIBCALL
	LIBCALLX
	LOAD
	MOV
	MOVC
	MUL
	MULQ
	NOP
	OR
	RESET
	RET
	RETI
	ROT, ROTC
	SETB,SETBC
	SEXT
	SHIFT, SHIFTC
	SLEEP
	STORE
	SUB, SUBB
	SWAP
	TEST
	TESTC
	TESTQ
	TESTB,TESTBC
	TRAP
	XOR

	Assembly syntax
	Instructions
	Symbols
	Directives
	Instructions

	Executable format
	Relocatable format
	Format

