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9 

Waveguide, Cavity and Microstrip Antenna 

Scientists often have a naive faith that if only they could discover enough facts about a problem, 

these facts would somehow arrange themselves in a compelling and true solution. 

THEODOSIUS DOBZHANSKY 

 

9.1 Introduction 

High radiation losses are a problem for the conventional open wire lines at high 

frequency. So we usually use low-loss microwave transmission lines like coaxial cables, 

rectangular waveguide, circular waveguide, etc. We will investigate these transmission 

lines first and then move onto cavity and microstrip antennas. Before that let us try to 

develop a strong theoretical background which will be required for analysis of these 

transmission lines and transmission line based devices.  

Note that for particular conductor geometry for a microwave transmission line, only 

certain patterns of electric and magnetic fields (also known as modes) can exist as 

propagating waves. These modes must be solutions to the governing differential equation 

(wave equation) while satisfying the appropriate boundary conditions for the fields. 

Coaxial cables have two conductors and we can define a unique current and voltage and 

characteristic impedance along the line using circuit equations. Whereas, waveguide 

typically has one enclosed conductor and we cannot define a unique voltage and current 

along the waveguide instead we must use fields to describe their operation.  
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The propagating modes along the transmission line or waveguide may be classified 

according to which field components are present or not present in the wave. The 

components of fields in the direction of wave propagation are defined as longitudinal 

components while those perpendicular to the direction of propagation are defined as 

transverse components.  

For time-harmonic fields (e
jωt 

time dependence), assuming wave propagation along the z-

axis, the electric and magnetic fields can be written as 

[ ] [ ] zj
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���
                  (9.1) 

where the first terms ),( yxEt

�
and ),( yxH t

�
represent the transverse components and 

second terms Ez and Hz represent the longitudinal components of the electric and 

magnetic fields respectively. 

 

9.1.1 Transverse electromagnetic (TEM) modes 

The electric and magnetic fields are transverse to the direction of wave propagation with 

no longitudinal components [Ez = Hz = 0]. TEM modes cannot exist on single conductor 

guiding structures. TEM modes are sometimes called transmission line modes since they 

are the dominant modes on transmission lines. Quasi-TEM modes – modes, which 

approximate true TEM modes when the frequency is sufficiently small. 
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f
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= =
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0                                                                                           (9.2) 

 

9.1.2 Transverse electric (TE) modes   
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The electric field is transverse to the direction of propagation (no longitudinal electric 

field component) while the magnetic field has both transverse and longitudinal 

components [Ez = 0, Hz ≠  0]. 

 

9.1.3 Transverse magnetic (TM) modes 

The magnetic field is transverse to the direction of propagation (no longitudinal magnetic 

field component) while the electric field has both transverse and longitudinal components 

[Hz = 0, Ez ≠  0].  

 

TE and TM modes are commonly referred to as waveguide modes since they are the only 

modes, which can exist, in an enclosed guiding structure. TE and TM modes are 

characterized by a cutoff frequency below which they do not propagate. TE and TM 

modes can exist on transmission lines but are generally undesirable (higher order modes). 

Transmission lines are typically operated at frequencies below the cutoff frequencies of 

TE and TM modes so that only the TEM mode exists. 
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Fig. 9.1 Waveguide, cavity and microstrip antenna 

9.1.4 Helmholtz wave equations 

We may write general solutions to the fields associated with the waves that propagate on 

a guiding structure using Maxwell’s equations. We assume the following about the 

guiding structure: 

(1) it is infinitely long, oriented along the z-axis, and uniform along its length. 

(2) it is constructed from ideal materials (conductors are Perfect Electric Conductor 

(PEC) and insulators are lossless). 

(3) fields are time-harmonic.  
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The fields of the guiding structure must satisfy the source free Maxwell’s equations. We 

can write down the two source-free Maxwell’s equations in phasor form as follows: 

E j Hωµ∇× = −
� �

                                 (9.3a) 

H j Eωε∇× =
� �

                                 (9.3b) 

Taking the curl of the first equation in (9.3a), expand it using the well known the vector 

identity, we have studied in chapter 1, and using the equation (9.3b), we have, 

EµεωHωµjEE)E(E 222
������

=×∇−=−∇=∇−•∇•∇=×∇×∇                   (9.4) 

Note that in the above equation we have also used the condition that 0E =•∇
�

in a source-

free region. Now the equation (9.4) can be expressed as 

0EkEEµεωE 2222 =+∇=+∇
����

                                                                   (9.5) 

which is the Helmholtz wave equation and k ω µε= . 

For time-harmonic fields ( j t
e

ω  time dependence) with wave propagation along the z-axis, 

the electric and magnetic fields can be written as 

( ) ( ) ˆ, , , j z

t z
E x y z e x y e z e β− = + 
� �

 

( ) ( ) ˆ, , , j z

t z
H x y z h x y h z e

β− = + 

��
 

where ( ),te x y
�

 and ( ),th x y
�

 represent the  transverse electric and magnetic field 

components and 
z

e  and 
z

h  represent the longitudinal electric and magnetic field 

components. This is the notation we will be following. 

For TEM waves (Ez = Hz =0), since µεωβ == k , we can further simplify the 

Helmholtz wave equation as below. 
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β

     ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = + − + = + =     

∂ ∂ ∂ ∂ ∂ ∂ ∂     
                 (9.6) 

Similarly,
2 2

2 2
0ye

x y

 ∂ ∂
+ = 

∂ ∂ 
.  

Therefore, 2 ( , ) 0
t t
e x y∇ =
�

                                                                              (9.7) 

which means that the transverse components of electric field satisfies the Laplace’s 

equation. Similarly, it can be shown that the transverse components of the magnetic field 

( 2 ( , ) 0
t t
h x y∇ =
�

) also satisfies the Laplace’s equation.  

Since, ˆ( , ) 0
t t z

e x y j h zωµ∇ × = − =
�

, we can define ( , )
t t

e x yφ= −∇
�

. Note that ( , )
t t

e x y∇ ×
�

 

will be directed along the z axis only since it involves unit vectors like 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,x y y x x x and y y× × × ×  only. For source free region,  

20 ( , ) 0
t t t

D e e x yε ε φ∇ • = ∇ • = ∇ • = ⇒∇ =
� � �

.                                           (9.8) 

So the transmission lines which support TEM waves like coaxial cables can be analyzed 

easily from the Laplace’s equation like in electrostatics. All we have to do is to solve the 

Laplace’s equation to find its solutions for the TEM waves. 

 

For TE waves (Ez =0), we can further simplify the Helmholtz wave equation as below. 

2 2 2 2 2 2 2
2 2 2 2

2 2 2 2 2 2 2
0z z c zk H k h k h

x y z x y x y
β

     ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = + − + = + + =     

∂ ∂ ∂ ∂ ∂ ∂ ∂     
         (9.9) 

where 222 β−= kkc  gives us the cut-off frequency for various TE modes or waves. 

 

For TM waves (Hz =0), we can further simplify the Helmholtz wave equation as below. 
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∂ ∂ ∂ ∂ ∂ ∂ ∂     
        (9.10) 

where 222 β−= kkc  gives us the cut-off frequency for various TM modes or waves. 

 

9.1.5 TE/TM fields 

You may be wondering why is that for both TE and TM waves we have simplified the 

wave equation for longitudinal components only. This is because once we get the 

longitudinal components of electric or magnetic fields, we can obtain the other 

components of the electric and magnetic fields. Let us do this analysis first in Cartesian 

coordinate system (suitable for rectangular waveguide) and then in Cylindrical coordinate 

system (suitable for circular waveguide).  

 

Cartesian Coordinate Systems (suitable for rectangular waveguides): 

Let us first write down the source-free Maxwell’s curl equation 










∂

∂
−

∂

∂
+








∂

∂
−

∂

∂
+








∂

∂
−

∂

∂
=

∂

∂

∂

∂

∂

∂
=×∇ xyzxyz

zyx

E
y

E
x

kE
x

E
z

jE
z

E
y

i

EEE

zyx

kji

E ˆˆˆ

ˆˆˆ
�

 

( )kHjHiHj zyx
ˆˆˆ ++−= ωµ                                                                             (9.11) 

Equating the x-, y- and z- components, we get, 

 xyz HjE
z

E
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∂

∂
−

∂

∂
                                                                          (9.12a) 
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Similarly, from the second source-free Maxwell’s curl equations, we have, 
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Putting the expression of Ey from equation 9.12e to 9.12a and noting that j
z

β
∂

≡ −
∂

 for a 

wave propagating along z-axis, we obtain, 
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Similarly, we can obtain the other components of electric and magnetic fields from the 

longitudinal components and those final equations are listed below. 
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How to remember the above formulae? 

The above four equations could be rewritten as 
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where 1 2 3 4, , ,
z z z z

f j E f j H f j E f j Hβ ωµ ωε β= = = =  

 

Cylindrical Coordinate Systems (suitable for circular waveguide): 

In cylindrical coordinate system, the first source-free Maxwell’s curl equation can be 

written as 

1 2 3
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Note that s1, s2 and s3 are the scale factors of cylindrical coordinate system. 

1 1 1ˆˆ ˆ
z z

E E E E z E E
z z

φ ρ φ ρρ φ ρ
ρ φ ρ ρ ρ ρ φ

     ∂ ∂ ∂ ∂ ∂ ∂
= − + − + −     

∂ ∂ ∂ ∂ ∂ ∂     
 

( )ˆˆ ˆ
z

j H H H zρ φωµ ρ φ= − + +                                                                             (9.14) 

Equating the ρ-, φ - and z- components, we get, 
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This can be further simplified as 
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Similarly from the second source-free Maxwell’s curl equations, we have, 
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Like the previous case, from equation 9.15d and 9.15h, we obtain, 
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Similarly, we can obtain the other components of electric and magnetic fields from the 

longitudinal components and those final equations are listed below. 
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How to remember the above formulae? 

The above four equations could be rewritten as 
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where 1 2 3 4, , ,
z z z z

f j E f j H f j E f j Hβ ωµ ωε β= = = =  

To summarize, for TE/TM fields, write down the Helmholtz wave equation of the non-

zero longitudinal component of the field then solve it. Next, once the longitudinal field 

components are known, we can obtain the transversal components of the fields using the 

above relations. The relations are different for Cartesian and Cylindrical coordinate 

systems. Cartesian coordinate system relations between the longitudinal components of 

the fields to the transversal components of the fields are suitable for rectangular 

waveguide analysis. Cylindrical coordinate system relations between the longitudinal 

components of the fields to the transversal components of the fields are suitable for 

circular waveguide analysis.  

 

9.2 Coaxial cables 

Let us analyze coaxial cables which are widely used as connectors in high frequency 

devices and applications. An ideal coaxial line consists of two perfect cylindrical 

conductors (one inner conductor and another outer conductor, see Fig. 9.2 (a)). The space 

between the two conductors is filled with a dielectric medium. The two conductors are at 

two different potentials and field configuration for the dominant TEM mode of 

propagation is also shown in Fig. 9.2 (b) and (c) respectively. Note that the inner 

conductor is at a potential of V0 and the outer conductor is at a potential of 0 V. ( , )ρ φΦ , 
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scalar potential function, can be found from the Laplace’s equation of (9.8) in cylindrical 

coordinates. Let us write down the Laplace equation in the general curvilinear coordinate 

system first (refer to chapter 1). 

2∇ Φ=
2 3 1 3 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1 s s s s s s

s s s a s a a s a a s a

     ∂ ∂Φ ∂ ∂Φ ∂ ∂Φ
= + +     

∂ ∂ ∂ ∂ ∂ ∂        

For cylindrical coordinate system, scale factors are  

s1=1,s2=ρ and s3=1  

and the three variables are  

1 2 3, ,a a a zρ φ= = =  

Hence, 

2 1 1

z z
ρ ρ

ρ ρ ρ φ ρ φ

    ∂ ∂Φ ∂ ∂Φ ∂ ∂Φ 
∇ Φ = + +     

∂ ∂ ∂ ∂ ∂ ∂     
 

Besides, in the Laplace equation of (9.8), we require only the transversal ( , )ρ φ  

components, longitudinal (z) components are zero. Note that the wave is propagating 

along the z-axis, that’s why the transversal plane is the ρφ − plane. 

2

2 2

1 ( , ) 1 ( , )
0

ρ φ ρ φ
ρ

ρ ρ ρ ρ ρ

∂ ∂Φ ∂ Φ
+ =

∂ ∂ ∂
 

The boundary conditions on the two metallic walls (inner and outer conductors) are 

0( , ) , ( , ) 0a V bφ φΦ = Φ =  
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ρ
φ

0VΦ =
0Φ =

 

Fig. 9.2 (a) 3-D geometry (b) front view and (c) field distribution of TEM waves in a 

coaxial cable 
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A point to be noted here is that in all the analysis we do in this chapter, we will use 

method of separation of variables. Assumption is made that all readers are familiar with 

this method. Using the method of separation of variables, 

( , ) ( ) ( )R Pρ φ ρ φΦ =  

where R is a function of ρ  and P is a function of φ  only. 

Now the above Laplace’s equation reduces to 

2

2 2
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P R R P
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ρ ρ ρ ρ φ
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Multiplying by 
2

PR

ρ
, we get, 
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ρ ρ φ

∂ ∂ ∂
+ =

∂ ∂ ∂
 

Each term must be equal to a constant. 

2R
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ρ ρ

∂ ∂
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                                                                                                 (9.17a) 

2
2

2

1 P
k

P
φ

φ

∂
= −

∂
                                                                                                  (9.17b) 

And 2 2 0k kρ φ+ = . 

General solution of equation 9.17b is 

( ) cos sinP A k B kφ φφ φ φ= +  

kφ is an integer then it is single valued since it repeats its value after every cycle of 

2φ π= . If it is a fraction say ½, the period is 4π, so it will be multiple valued since it 

involves twice rotation on the coaxial cable circumference. Since the boundary conditions 
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do not vary with φ , the potential ( )φΦ  should not change with φ . This implies that kφ  

must be zero. It implies that 0kρ = . 

0 0 ln
R R R R C

C R C D
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ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ
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Note that C and D are two unknown constants; we need to find applying boundary 

conditions. 
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�

 

In general curvilinear coordinate system (refer to chapter 1), gradient of a scalar function 

is defined as 

1 2 3

1 1 2 2 3 3

a a a
s a s a s a

∂Φ ∂Φ ∂Φ
∇Φ = + +
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� � �

 

For cylindrical case and considering transversal components only we have, 
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For TEM waves, magnetic field is perpendicular to both the electric field and the 

direction of the wave propagation. Its amplitude is reduced by a factor of 1/η from the 

electric field amplitude. Hence, 
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The characteristic impedance of the coaxial line is given by 0
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The voltage between the two conductors can be calculated as  
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The total current on the inner conductor at aρ = can be calculated as 
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Note that outer conductor is grounded and in between the two conductors, we usually 

have some dielectric filling. Besides, the current and voltage are waves propagating along 

the z-axis.  

( )
( )0 ln( ) ln( )

2 2

V z b b
Z

I z a a

µ
η ε
π π

∴ = = =  

This means depending on the dielectric between the two conductors and ratio of the 

radius of the outer and inner conductors, we can have coaxial cable of various 

characteristic impedances. Note that the flow of power in a transmission line takes place 

entirely via the electric and magnetic fields between the two conductors; power is not 

transmitted through the conductors themselves. For high power transmission, coaxial 

cables are used up to 3GHz whereas for low signal transmission they can be used up to 

18GHz. In this case, wave travels at the speed of light (non-dispersive). Hence, the phase 

constant k =β = ω/c. Now that we have found out the two important parameters of a 

transmission line, let us discuss the issue of higher order modes inside coaxial cables.  

Higher order modes:  

The basic mode which will be propagating in a coaxial cable is TEM mode. At 

sufficiently high frequency, some other higher order modes are generated. The lowest 

higher order mode in coaxial lines is TE11 and the cut-off wavelength of these modes 

is: 11( ) ( )
( )

2
2

p

c c

c
r r

v c
TE a b f

a b
λ π

λ µ ε π
≅ + ⇒ = ≅

+
. Therefore, the average 

circumference of the inner and outer conductors of the coaxial line should be less than the 

operating wavelength in order to prevent the higher order mode interference. Similar kind 
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of phenomenon occurs in waveguide also, this will be clearer when we discuss 

overmoded waveguides. 

Review Question 9.1: What are TEM, TE and TM waves? 

Review Question 9.2: Write down the two source-free Maxwell’s curl equations. 

Review Question 9.3: Derive the wave equations for TEM, TE and TM waves. 

Review Question 9.4: Does electric field of TEM waves satisfy Laplace’s equations? 

Review Question 9.5: How to obtain the transverse components of electric and magnetic 

fields (Ex, Ey, Hx and Hy) when the longitudinal components (Ez and Hz) are given in 

Cartesian coordinate systems? 

Review Question 9.6: How to obtain the transverse components of electric and magnetic 

fields (Eρ, Eφ , Hρ and Hφ ) when the longitudinal components (Ez and Hz) are given in 

Cylindrical coordinate systems? 

Review Question 9.7: Write down the expression for propagation constant and 

characteristic impedance of a coaxial cable. 

Review Question 9.8: What is the dominant mode of propagation in a coaxial cable? 

Review Question 9.9: How to suppress the propagation of higher order modes in coaxial 

cable? 

 

9.3 Rectangular waveguide  

What are waveguides?  

These are hollow metal pipes that guide EM waves. Depending on the shape of the metal 

pipe: they can be rectangular or circular waveguide. Fiber optical cables are an example 



Fundamentals of Electromagnetic Fields, Waves and Radiating Systems 

by Rakhesh Singh Kshetrimayum 

 

 399 

of waveguide which operates at optical frequencies. We will assume that waveguide is 

invariant along z-axis and wave is propagating along the positive z-axis (we may also 

assume wave propagation along negative z-axis without loss of generality). 

 

Fig. 9.3 Rectangular waveguide (a and b dimensions are for inner walls of the 

waveguide) 

The geometry of a rectangular waveguide is depicted in Fig. 9.3. It is conventional to 

have a>b and usually waveguides are hollow metal pipe or filled with a dielectric 

medium. Since the waveguide has only single conductor, it can’t support TEM waves. 

TE/TM modes will propagate inside a waveguide structure.  

9.3.1 TE modes:    

For transverse electric or TE modes, 0
z

E = and 0
z

H ≠ , since the electric field is 

transverse or perpendicular to the direction of propagation of the wave. In this case, we 

have assumed that the waves are propagating along the z-axis. Since 0
z

E = and 0
z

H ≠ , 
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we should first find 
z

H  and find the other components of the fields. For propagation in 

the positive z direction, ( , ) j z

z z
H h x y e

β−= . Then the equation (9.9) becomes, 

2 2
2

2 2

z z
c z

h h
k h

x y

∂ ∂
∴ + = −

∂ ∂
 

Applying method of separation of variables, we get, 

( , ) ( ) ( )
z

h x y X x Y y=  

2 2
2

2 2

2 2
2

2 2

1 1

c

c

X Y
Y X k XY

x y

X Y
k

X x Y y

∂ ∂
⇒ + = −

∂ ∂

∂ ∂
⇒ + = −

∂ ∂

 

Note that the first term in the above equation is totally dependent on x variable whereas 

the second term is totally dependent on the variable y and in the RHS of the equation we 

have a constant. So we can equate the first term to a constant 2

x
k−  and second term to a 

constant 2

yk− . Then the separation equation becomes  

2 2 2

x y ck k k⇒ + =  

cos sin
x x

X A k x B k x∴ = +  and cos sin
y y

Y C k y D k y= + . 

Hence, 

( , , ) ( , ) ( ) ( ) ( cos sin ) ( cos sin )j z j z j z

z z x x y yH x y z h x y e X x Y y e A k x B k x C k y D k y e
β β β− − −= = = + × +

 

Applying the boundary conditions on the waveguide walls (tangential components of the 

electric field is zero on a perfect metal, perfect metal was discussed in chapter 3), we 

have, 

( , ) 0
x

e x y =     at   y=0,b (horizontal walls)  where ( , , ) ( , ) j z

x xE x y z e x y e
β−=  
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( , ) 0
y

e x y =     at   x=0,a  (vertical walls)  where ( , , ) ( , ) j z

y yE x y z e x y e
β−=  

From the first boundary condition (using equation 9.13c), we have, 

0,

2 2

,

( cos sin )( sin cos )

0

x
y b

z y j z

x x y y

c c y o b

E

H j kj
e A k x B k x C k y D k y

k y k

β
ωµωµ

=

−

=

∂ −−
= = + − +

∂

=

 

0, sin 0
y y

D C k b k b nπ⇒ = = ⇒ =  

From the second boundary condition (using equation 9.13d), we have, 

0,

2 2

,

( cos )( cos sin )

0

y x a

z j z

x x x y y

c c x o a

E

Hj j
e k Asink x B k x C k y D k y

k x k

βωµ ωµ

=

−

=

∂
= = − + +

∂

=

 

0, sin 0
x x

B A k a k a mπ⇒ = = ⇒ =  

Hence, we can write, 

( , , ) cos cosj z

z x yH x y z e A k xC k y
β−= 0 cos cos j zm x n y

H e
a b

βπ π −=          [Setting A C= 0H ] 

02
cos sin j z

x y

c

j m x n y
E k H e

k a b

βωµ π π −=  

02
sin cos j z

y x

c

j m x n y
E k H e

k a b

βωµ π π −−
=  

From equation (9.13a), 

02 2
sin cos

z j z

x x

c c

Hj j m x n y
H k H e

k x k a b

ββ π π
β −

∂−
= =

∂
  

From equation (9.13b), 
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02 2
cos sin

z j z

y y

c c

Hj j m x n y
H k H e

k x k a b

ββ π π
β −

∂−
= =

∂
 

,
x y

m n
where k k

a b

π π
= =  

the   propagation constant  is 2 2 2 2 2 2 2 2( ) ( ) ( )c x y

m n
k k k k k k

a b

π π
β = − = − − = − −  

β  is real ( ≥ 0) for a propagation mode. For finding the cut-off frequency, β =0. 

2 2( ) ( )c

m n
k k

a b

π π
ω µε= ⇒ = + 2 21

( ) ( )
2

c

m n
f

a b

π π

π µε
⇒ = +  

The mode with the lowest cutoff frequency is called the dominant mode since it is 

customary to choose the waveguide dimension a>b, so the dominant mode is 10TE  with 

cut-off frequency of 
10

1 1

2 2
cf

a a

π

π µε µε
= = . The field expressions for E

��

and H
���

 are 

zero (except Hz) if m=n=0, hence, there are no 00TE  mode propagating inside the 

rectangular waveguide. At a given frequency only those modes with 
c

f f>  will 

propagate, modes with 
c

f f<  will lead to imaginary value of β  which implies real 

value of α, hence these fields decay exponentially away from the source of excitations 

and such modes are said to be evanescent modes.  

Example 9.1 

What is an overmoded waveguide? Explain with the help of an X-band waveguide whose 

dimension is a=22.86 mm and b=10.16 mm. 

Solution: In an overmoded waveguide, several modes will be propagating. It is an 

unwanted situation because there will be power allocation to different modes which are 

propagating and the analysis of such an overmoded waveguide becomes highly 
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complicated. Let us consider simple hollow X-band waveguide whose dimension is 

a=22.86 mm and b=10.16 mm. Let us calculate the cut-off frequencies for the first three 

propagating modes (TE10, TE20 and TE01) inside this rectangular waveguide.  

2 2( ) ( )
2

c

c m n
f

a b

π π

π
= +  

Note that for TE10 mode m=1,n=0; for TE20 mode m=2,n=0 and for TE01 mode m=0,n=1. 

Hence the cut-off frequencies for the three modes are 6.56 GHz, 13.12 GHz and 14.7 

GHz respectively. Note that for single mode operation of the waveguide for the dominant 

TE10 mode, the frequency range is from 6.56 GHz to 13.12 GHz. This is useful frequency 

region for the X-band waveguide. Besides, at 14.7GHz, waveguide will have three modes 

(TE10, TE20 and TE01) propagating and we call such waveguides as overmoded 

waveguide. 

   

The wave impedance that relates the transverse electrical and magnetic fields is given 

by
yx

TE

y x

EE
Z

H H

ωµ

β
= = − = . Note that 

TE
Z  is real for propagating mode since β is real. 

Guided wavelength is defined as 
2

g

π
λ

β
=  and phase velocity is defined as 

ω

β
.  

2 2 2( ) ( )

p
v

m n
k

a b

ω

π π
=

− −

 

Note that c=ω/k. But for the phase velocity inside the waveguide, denominator is a 

smaller number than k. Hence, the phase velocity is greater than the speed of light. This 

do not violate Einstein’s law since energy and information flow is dependent on the 

group velocity.  
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Example 9.2 

Find the group velocity inside rectangular waveguide.  Show that it is lesser than the 

speed of light. 

Solution: 

Group velocity is defined as 

( )

( ) ( )

2 2 2

2

2 2 2 2

2 2

2 2

1 1

( ) ( )

1 1

1 2

( ) ( ) 2
( ) ( )

g

p

d
v

dd m n
d k

d a b

d

m n
d c m nc a b

c a b
d

c c

v

ω
ββ π π
ω

ω

ω
ω π π

ω π π

ω

β

ω

= = =
 

− − 
 

= =
   − −      − −   

 

= =

 

Hence the group velocity is less than the speed of light since phase velocity is greater 

than the speed of light.  

Let us spend few lines on the guided wavelength of the different modes propagating 

inside the rectangular waveguide. We know that the free space wavelength is given by 

λ=2π/k. Inside the waveguide, the guided wavelength will be 

2 2 2

2 2

( ) ( )

g
m n

k
a b

π π
λ λ

β π π
= = >

− −

 

Therefore, different modes will have different guided wavelength and it is longer than the 

free space wavelength.  

9.3.2 Dominant mode of a rectangular waveguide: 

For  10TE  mode, m=1, n=0,  
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x
E =0  

z
E =0 

0 sin j z

y

j a x
E H e

a

βωµ π

π
−−

=                        

0 sin j z

x

j a x
H H e

a

ββ π

π
−=  

0
y

H = and 

0 cos j z

z

x
H H e

a

βπ −=   

where 2 2( )k
a

π
β = −  and 2 2

c x y
k k k

a

π
= + = .  

The other parameters of interest are: 

2 2
c

c c
f

a a

π

π
= =  

2 2( )

y

TE

x

E
Z

H
k

a

ωµ ωµ

β π
= − = =

−

 

2 2

2 2

( )

g

k
a

π π
λ λ

β π
= = >

−

 

2 2( )

p
v

k
a

ω

π
=

−

 

( )
2

g

p

c
v

v
=  

We can also calculate the power flow through rectangular waveguide for 10TE  mode as 

follows: 
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10

0 0

1
ˆRe *

2

a b

x y

P E H zdxdy
= =

  
= × • 

  
∫ ∫

� �

0 0

1
ˆ ˆ ˆRe ( * * )

2

a b

y z y x

x y

E H x E H z zdxdy
= =

  
= − • 

  
∫ ∫

2
2 2

02

0 0

1
sin

2

a b

x y

a x
H dxdy

a

ωµ π
β

π
= =

= ∫ ∫
2

2

02

1

2 2

a b a
H

ωµ
β

π
=

3
2

02

1

4

a b
H

ωµ
β

π
=                   

Note that β   is real  for 10TE  mode. 

9.3.3 TM modes:    

For transverse magnetic or TM modes, 0
z

H = and 0
z

E ≠ , since the magnetic field is 

transverse or perpendicular to the direction of propagation of the wave. In this case, we 

have assumed that the waves are propagating along the z-axis. Since 0
z

H = and 0
z

E ≠ , 

we should first find 
z

E  and find the other components of the fields. For propagation in 

the positive z direction, ( , ) j z

z z
E e x y e

β−= . Then the equation (9.10) becomes, 

2 2
2

2 2

z z
c z

e e
k e

x y

∂ ∂
∴ + = −

∂ ∂
 

Applying method of separation of variables, we get, 

( , ) ( ) ( )
z

e x y X x Y y=  

2 2
2

2 2

2 2
2

2 2

1 1

c

c

X Y
Y X k XY

x y

X Y
k

X x Y y

∂ ∂
⇒ + = −

∂ ∂

∂ ∂
⇒ + = −

∂ ∂

 

Note that the first term in the above equation is totally dependent on x variable whereas 

the second term is totally dependent on the variable y and in the RHS of the equation we 

have a constant. So we can equate the first term to a constant 2

x
k−  and second term to a 

constant 2

yk− .  
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2 2 2

x y ck k k⇒ + =  

cos sin
x x

X A k x B k x∴ = +  and cos sin
y y

Y C k y D k y= + . 

Hence, 

( , , ) ( , ) ( ) ( ) ( cos sin ) ( cos sin )j z j z j z

z z x x y yE x y z e x y e X x Y y e A k x B k x C k y D k y e
β β β− − −= = = + × +

 

Applying the boundary conditions on the waveguide walls (tangential components of the 

electric field is zero), we have, 

( , ) 0
x

e x y =     at   y=0,b        where        ( , , ) ( , ) j z

x xE x y z e x y e
β−=  

( , ) 0
y

e x y =     at   x=0,a                         ( , , ) ( , ) j z

y yE x y z e x y e
β−=  

From the first boundary condition (using equation 9.13c), we have, 

0,

2 2

,

( sin cos )( cos sin )

0

x
y b

z j zx
x x y y

c c y o b

E

E j kj
e A k x B k x C k y D k y

k x k

βββ

=

−

=

∂ −−
= = − + +

∂

=

 

0, sin 0
y y

C D k b k b nπ⇒ = = ⇒ =  

From the second boundary condition (using equation 9.13d), we have, 

0,

2 2

,

( cos sin )( sin cos )

0

y x a

z y j z

x x y y

c c x o a

E

E j kj
e A k x B k x C k y D k y

k y k

β
ββ

=

−

=

∂
= − = − + − +

∂

=

 

0, sin 0
x x

A B k a k a mπ⇒ = = ⇒ =  

Hence, we can write, 

( , , ) sin sinj z

z x yE x y z e B k xD k y
β−= 0 sin sin j zm x n y

E e
a b

βπ π −=          [Setting B D= 0E ] 
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02 2
cos sin

z j zx
x

c c

E j kj m x n y
E E e

k x k a b

βββ π π −
∂ −−

= =
∂

 

02 2
sin cos

z y j z

y

c c

E j kj m x n y
E E e

k y k a b

β
ββ π π −

∂
= − = −

∂
 

From equation (9.13a), 

02 2
sin cos

z j z

x y

c c

Ej j m x n y
H k E e

k y k a b

βωε ωε π π −
∂

= =
∂

  

From equation (9.13b), 

02 2
cos sin

z j z

y x

c c

Ej j m x n y
H k E e

k x k a b

βωε ωε π π −
∂

= − = −
∂

 

,
x y

m n
where k k

a b

π π
= =  

the   propagation constant  is 2 2 2 2 2 2 2 2( ) ( ) ( )c x y

m n
k k k k k k

a b

π π
β = − = − − = − −  

β  is real ( ≥ 0) for a propagation mode. For finding the cut-off frequency, β =0. 

2 2( ) ( )c

m n
k k

a b

π π
ω µε= ⇒ = + 2 21

( ) ( )
2

c

m n
f

a b

π π

π µε
⇒ = +  

The field expression for 
z

E is zero if either (or both) m and n are zero, hence, there are no 

00 01 10, ,TM TM TM  modes propagating inside the rectangular waveguide. The first mode 

which will propagate inside rectangular waveguide is 11TM  with a cut-off frequency of 

11

2 21
( ) ( )

2
cf

a b

π π

π µε
= + .  

Let us summarize what we have learnt in rectangular waveguides. There are two sets of 

waveguide modes, TE and TM modes that can be guided along a rectangular waveguide. 
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For TE modes, 0
z

E = and ( , , )
z

H x y z = 0 cos cos j zm x n y
H e

a b

βπ π − . The other field 

components can be derived using equation (9.13). The boundary conditions require that 

Ex = 0 at y = 0 and y = b (horizontal walls) and Ey = 0 at x = 0 and x = a (vertical walls). 

Hence, two sets of guidance conditions are derived as kx = mπ/a and ky = nπ/b, where m, 

n = 0, 1, 2, · · ·. For TE00 cases, no field exist inside the rectangular waveguide except 

( , , )
z

H x y z  and hence no waveguide mode exist for this case. The TE mode with kx = 

mπ/a and ky = nπ/b is denoted as the TEmn mode. Most practical rectangular waveguides 

operate in the TE10 mode also known as the dominant mode with the electric field 

0 sin j z

y

j a x
E H e

a

βωµ π

π
−−

=  where 
2 2( )k

a

π
β = − , the cutoff wave number is 

2 2

c x y
k k k

a

π
= + =  and the cutoff wavelength is 2

c
aλ = . Similarly, the TM modes can 

be derived by setting 0
z

H = and ( , , )
z

E x y z 0 sin sin j zm x n y
E e

a b

βπ π −= . The other field 

components can be derived using equation (9.13). The same boundary conditions require 

that Ex = 0 at y = 0 and y = b (horizontal walls) and Ey = 0 at x = 0 and x = a (vertical 

walls). The same guidance conditions are derived as kx = mπ/a and ky = nπ/b except that 

m, n = 1, 2, · · ·. For TM0n, TMm0 and TM00 cases, it will give ( , , )
z

E x y z =0 and hence no 

field exist inside the rectangular waveguide. The TM mode with kx = mπ/a and ky = nπ/b 

is denoted as the TMmn mode. The first propagating mode is TM11 mode with a cut-off 

frequency of 
11

2 21
( ) ( )

2
cf

a b

π π

π µε
= + . 
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Review question 9.10: Is the β  and 
TE

Z  real for propagation of TE modes inside 

rectangular waveguide?  

Review question 9.11: What is the dominant mode of propagation inside rectangular 

waveguide? 

Review question 9.12: What are the cut-off frequencies for TE10 and TE11 modes inside a 

rectangular waveguide? 

Review question 9.13: Can rectangular waveguide have TE00, TM00, TM01 and TM10 

modes of propagation? 

Review question 9.14: What are the field expressions for TE10 dominant mode of 

propagation of a rectangular waveguide?  

Review question 9.15: What are evanescent modes inside rectangular waveguide? 

Review question 9.16: Is it true that for evanescent modes inside rectangular waveguide β 

is real? 

Review question 9.17: What is an overmoded waveguide? Why don’t we want a 

waveguide to operate in overmoded propagation?  

Review question 9.18: Can phase velocity inside waveguide be greater than the speed of 

light? Does it violate the Einstein’s law? 

Review question 9.19: What is the product of the phase velocity and group velocity inside 

rectangular waveguide? 

 

9.4 Circular Waveguide 
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For hollow circular waveguide of radius a, we could also do the same analysis in 

cylindrical coordinate system to get TE modes fields propagating inside the cylindrical 

waveguide depicted in Fig. 9.4. 

ρ
φ

 

Fig. 9.4 Circular waveguide 

9.4.1 TE modes: 

As we know that for TE modes with wave propagation along the z-axis, we have, 0
z

E =  

and 0
z

H ≠ . Therefore, the wave equation for 
z

H  is   

2 2 0
z z

H k H∇ + =  where k ω µε=  

For propagation along z-axis, 
z

h  is a function of ( , )ρ φ  only. Mathematically, 

( , , ) ( , ) j z

z z
H z h e

βρ φ ρ φ −=   
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From chapter 1, the Laplacian of a scalar function φ  in general curvilinear coordinate 

system is defined as  

2 2 3 1 3 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1
( )

s s s s s s

s s s a s a a s a a s a

φ φ φ
φ

∂ ∂ ∂ ∂ ∂ ∂
∇ = + +

∂ ∂ ∂ ∂ ∂ ∂
  

For cylindrical coordinate system it reduces to 

2 2
2

2 2

2 2
2

2 2 2

1 1
0

1 1
0

z z z
z

z z z
z

H H H
k H

z

H H H
k H

z

ρ ρ
ρ ρ ρ ρ φ

ρ
ρ ρ ρ ρ φ

 ∂ ∂ ∂∂
+ + + = 

∂ ∂ ∂ ∂ 

∂ ∂ ∂∂
⇒ + + + =

∂ ∂ ∂ ∂

 

2
2 2

2 2

1 1
( ) 0

z
k hρ β

ρ ρ ρ ρ φ

∂ ∂ ∂
⇒ + − + =

∂ ∂ ∂
 

2 2
2

2 2 2

1 1
( ) 0

c z
k h

ρ ρ ρ ρ φ

∂ ∂ ∂
⇒ + + + =

∂ ∂ ∂
  

where 2 2 2

c
k k β= −  

Applying the method of separation of variables, let us assume that  

( , ) ( ) ( )
z

h R Pρ φ ρ φ=  

Hence the above equation reduces to 

2 2
2

2 2 2
0

c

P R R R P
P k RP

ρ ρ ρ ρ φ

∂ ∂ ∂
+ + + =

∂ ∂ ∂
 

Now multiply the above equation by  
2

RP

ρ
, we get, 

2 2 2
2 2

2 2

1
0

c

R R P
k

R R P

ρ ρ
ρ

ρ ρ φ

∂ ∂ ∂
⇒ + + + =

∂ ∂ ∂
 

Equating the 3
rd

 term in the above equation to a constant 2
kφ− , we have, 
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2
2

2

1
cos sin

P
k P A k B k

P
φ φ φφ φ

φ

∂
= − ⇒ = +

∂
 

kφ  must be an integer values otherwise the function P will be multiple valued. Hence, 

cos sinP A n B nφ φ= +   

where n is an integer.  

Therefore the main equation  

2 2 2
2 2

2 2

1
0

c

R R P
k

R R P

ρ ρ
ρ

ρ ρ φ

∂ ∂ ∂
+ + + =

∂ ∂ ∂
 

can be further simplified as 

( )

2 2
2 2 2

2

2
2 2 2 2

2

0

0

c

c

R R
n k

R R

R R
k n R

ρ ρ
ρ

ρ ρ

ρ ρ ρ
ρ ρ

∂ ∂
+ − + =

∂ ∂

∂ ∂
⇒ + + − =

∂ ∂

  

Solution for the above Bessel’s differential equation is  

( ) ( )
n c n c

R CJ k DY kρ ρ= +   

where 

2

0

( 1) ( )
2( )

!( )!

m m n

c

n c

m

k

J k
m m n

ρ

ρ

+
∞

=

−
=

+
∑  is the Bessel’s function of first kind of n

th
 order and 

( ) cos( ) ( )
( )

sin

n c n c
n c

J k n J k
Y k

n

ρ π ρ
ρ

π
−−

= is the Bessel’s function of second kind of th
n  order. 

We can also find  

2

0

( 1) ( )
2( )

!( )!

m m n

c

n c

m

k

J k
m m n

ρ

ρ

−
∞

−
=

−
=

−
∑   

Note that ( )n cY k ρ → ∞  as ( ) 0
c

k ρ →  which is physically not acceptable as fields must 

be finite at the origin and hence choose D=0.  
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Now, ( )
n c

R CJ k ρ= .  

The expression for the longitudinal component of the magnetic field is 

( , , ) ( cos sin ) ( ) j z

z n c
H z A n B n J k e

βρ φ φ φ ρ −= +  

One of the two terms of P(φ ) can be eliminated. Both have the same field pattern except 

for a rotation of   090  in the φ  direction. Also the excitation can be chosen in such a way 

that only one term can exist at any time. Setting B=0, we can further simplify the above 

expression as  

( , , ) ( cos ) ( ) j z

z n c
H z A n J k e

βρ φ φ ρ −=  

0Eφ =∵  at the waveguide walls (tangential component of the electric field is zero at the 

metallic walls), we can apply this boundary condition. From equation 9.16(d), 

'

2 2
cos ( ) 0j zcz

n ca
c ca a

j kHj
E A n J k e

k k

β
φ ρ

ρ ρ

ωµωµ
φ ρ

ρ
−

=
= =

∂
= = =

∂
 

' '( ) 0n c c nm
a

J k k a p
ρ

ρ
=

⇒ = ⇒ =  

The th
m  root of derivative of the n

th
 order Bessel’s function of first kind ' ( )

n c
J k ρ  is 

denoted by '

nm
p  and '

c nm
k a p=  

A note on Bessel’s functions: 0 ( )J x  and 1( )J x  

For n=0,  

2

0 2 2
0

( 1)
( )

2 ( !)

m m

m
m

x
J x

m

∞

=

−
=∑

2 4 6

2 2 4 2 6 2
1 ..........

2 (1!) 2 (2!) 2 (3!)

x x x
= − + − +    

which looks like a cosine function.  

For n=1,  
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2 1

1 2 1
0

( 1)
( )

2 !( 1)!

m m

m
n

x
J x

m m

+∞

+
=

−
=

+
∑  

3 5 7

3 5 7
.................

2 2 1!2! 2 2!3! 2 3!4!

x x x x
= − + − +   

which looks like a sine function.   

But the zeros are not completely regularly spaced and the height of the wave decrease 

with increasing x.  

 

Fig. 9.5 Plot of derivative of Bessel’s function of first kind of order 0, 1 and 2 [note that 

( ) ( )
( )'

1

n

n n

nJ z
J z J z

z
+= − +  and MATLAB command for ( )nJ z  is besselj (n, z)] 

Table 9.1 Values for '

nm
p  for different values of m (m

th
 root of the derivative of the 

Bessel’s function) and n (order of the Bessel’s function) 

n                           m 1 2 

0 3.832 7.016 

1 1.841 5.331 

 



Fundamentals of Electromagnetic Fields, Waves and Radiating Systems 

by Rakhesh Singh Kshetrimayum 

 

 416 

Now, ( , , ) ( cos ) ( ) j z

z n c
H z A n J k e

βρ φ φ ρ −=  

For other fields components are obtained using equation 9.16. 

2

z

c

Hj
E

k
ρ

ωµ

ρ φ

∂−
=

∂ 2
( )( sin ) j z

n c

c

j n
J k A n e

k

βωµ
ρ φ

ρ
−=  

2

z

c

Hj
E

k
φ

ωµ

ρ

∂
=

∂

'cos ( ) j z

n c

c

j
A n J k e

k

βωµ
φ ρ −=  

2

z

c

Hj
H

k
ρ β

ρ

∂−
=

∂

'cos ( ) j z

n c

c

j
A n J k e

k

ββ
φ ρ −−

=  

2

z

c

Hj
H

k
φ

β

ρ φ

∂−
=

∂ 2
( sin ) ( ) j z

n c

c

j n
A n J k e

k

ββ
φ ρ

ρ
−=  

where 
'

nm
c

p
k

a
=  

But what we want is '

01p , '

11p  and so on which are listed in the table 9.1 and it can be 

obtained from Fig. 9.5. 

For 
nm

TE   mode,  

'
2 2 2 2( )nm

nm c

p
k k k

a
β = − = −   

For cutoff frequency, 
nm

β =0   

'
1

2

nm
c

p
f

aπ µε
⇒ =  

The mode with the lowest cutoff frequency is called the dominant mode. Dominant mode 

is 11TE  for  '

11p  since it has the smallest value of 1.841 with cut-off frequency of 
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11

1 1.841

2
cf

aπ µε
= . The field expressions for E

��

and H
���

 do not exist for m=n=0, hence, 

there are no 00TE  mode propagating inside the circular waveguide.  

The wave impedance is
TE

E
Z

H

ρ

φ

ωµ

β
= = . Guided wavelength is defined as 

2
g

π
λ

β
=  and 

phase velocity is defined as 
ω

β
.  

'
2 2( )

p

nm

v
p

k
a

ω
=

−

 

Note that c=ω/k. But for the phase velocity inside the waveguide, denominator is a 

smaller number than k. Hence, the phase velocity is greater than the speed of light. This 

do not violate Einstein’s law since energy and information flow is dependent on the 

group velocity. Group velocity is defined as 

( )

( ) ( )

'
2 2

2 '
2 2 2 '

2

2 2

1 1

( )

1 1

1 2

( ) 2
( )

g

nm

nm

nm

p

d
v

dd p
d kd a

d

p
d c pc a

c a
d

c c
c

v

ω
ββ
ω

ω

ω
ω

ω

ω

β

ω

= = =
 

− 
 
 

= =
   −      −   

 

= = <

 

 

9.4.2 Dominant mode of a circular waveguide: 

For the dominant 11TE  mode, the field expressions are 
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12
( )( sin ) j z

c

c

j
E J k A e

k

β
ρ

ωµ
ρ φ

ρ
−=  

'

1cos ( ) j z

c

c

j
E A J k e

k

β
φ

ωµ
φ ρ −=  

0
z

E =  

'

1cos ( ) j z

c

c

j
H A J k e

k

β
ρ

β
φ ρ −−

=  

12
( )( sin ) j z

c

c

j
H J k A e

k

β
φ

β
ρ φ

ρ
−=  

'

1cos ( ) j z

z c
H A J k e

βφ ρ −=  

where 2 21.841
( )k

a
β = −  and 

1.841
c

k
a

= .  

The other parameters of interest are: 

1.841

2
c

c
f

aπ
=  

2 21.841
( )

y

TE

x

E
Z

H
k

a

ωµ ωµ

β
= − = =

−

 

2 2

2 2

1.841
( )

g

k
a

π π
λ λ

β
= = >

−

 

2 21.841
( )

p
v

k
a

ω
=

−

 

( )
2

g

p

c
v

v
=  

9.4.3 TM modes: 
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As we know that for TM modes with wave propagation along the z-axis, we have, 0
z

E ≠  

and 0
z

H = . Therefore, the wave equation for 
z

E  is   

2 2 0
z z

E k E∇ + =  where k ω µε=  

For propagation along z-axis, 
z

e  is a function of ( , )ρ φ  only. Mathematically, 

( , , ) ( , ) j z

z z
E z e e

βρ φ ρ φ −=   

For cylindrical coordinate system, wave equation could be written as 

2 2
2

2 2

2 2
2

2 2 2

1 1
0

1 1
0

z z z
z

z z z
z

E E E
k E

z

E E E
k E

z

ρ ρ
ρ ρ ρ ρ φ

ρ
ρ ρ ρ ρ φ

 ∂ ∂ ∂∂
+ + + = 

∂ ∂ ∂ ∂ 

∂ ∂ ∂∂
⇒ + + + =

∂ ∂ ∂ ∂

 

2
2 2

2 2

1 1
( ) 0

z
k eρ β

ρ ρ ρ ρ φ

∂ ∂ ∂
⇒ + − + =

∂ ∂ ∂
 

2 2
2

2 2 2

1 1
( ) 0

c z
k e

ρ ρ ρ ρ φ

∂ ∂ ∂
⇒ + + + =

∂ ∂ ∂
  

where 2 2 2

c
k k β= −  

Applying the method of separation of variables, let us assume that  

( , ) ( ) ( )
z

e R Pρ φ ρ φ=  

Hence the above equation reduces to 

2 2
2

2 2 2
0

c

P R R R P
P k RP

ρ ρ ρ ρ φ

∂ ∂ ∂
+ + + =

∂ ∂ ∂
 

Now multiply the above equation by  
2

RP

ρ
, we get, 

2 2 2
2 2

2 2

1
0

c

R R P
k

R R P

ρ ρ
ρ

ρ ρ φ

∂ ∂ ∂
⇒ + + + =

∂ ∂ ∂
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Equating the 3
rd

 term in the above equation to a constant 2
kφ− , we have, 

2
2

2

1
cos sin

P
k P A k B k

P
φ φ φφ φ

φ

∂
= − ⇒ = +

∂
 

kφ  must be an integer values otherwise the function P will be multiple valued. Hence, 

cos sinP A n B nφ φ= +   

where n is an integer.  

Therefore the main equation  

2 2 2
2 2

2 2

1
0

c

R R P
k

R R P

ρ ρ
ρ

ρ ρ φ

∂ ∂ ∂
+ + + =

∂ ∂ ∂
 

can be further simplified as 

( )

2 2
2 2 2

2

2
2 2 2 2

2

0

0

c

c

R R
n k

R R

R R
k n R

ρ ρ
ρ

ρ ρ

ρ ρ ρ
ρ ρ

∂ ∂
+ − + =

∂ ∂

∂ ∂
⇒ + + − =

∂ ∂

  

Solution for the above Bessel’s differential equation is  

( ) ( )
n c n c

R CJ k DY kρ ρ= +   

where 

2

0

( 1) ( )
2( )

!( )!

m m n

c

n c

m

k

J k
m m n

ρ

ρ

+
∞

=

−
=

+
∑  is the Bessel’s function of first kind of n

th
 order and 

( ) cos( ) ( )
( )

sin

n c n c
n c

J k n J k
Y k

n

ρ π ρ
ρ

π
−−

= is the Bessel’s function of second kind of th
n  order. 

We can also find  

2

0

( 1) ( )
2( )

!( )!

m m n

c

n c

m

k

J k
m m n

ρ

ρ

−
∞

−
=

−
=

−
∑   
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Note that 
n

Y → ∞  as ( ) 0
c

k ρ →  which is physically not acceptable as fields must be 

finite at the origin and hence choose D=0.  

Now, ( )
n c

R CJ k ρ= .  

The expression for the longitudinal component of the electric field is 

( , , ) ( cos sin ) ( ) j z

z n c
E z A n B n J k e

βρ φ φ φ ρ −= +  

One of the two terms of P(φ ) can be eliminated. Both have the same field pattern except 

for a rotation of   090  in the φ  direction. Also the excitation can be chosen in such a way 

that only one term can exist at any time. Setting B=0, we can further simplify the above 

expression as  

( , , ) ( cos ) ( ) j z

z n c
E z A n J k e

βρ φ φ ρ −=  

0Eφ =∵  at the waveguide walls (tangential component of the electric field is zero at the 

metallic walls), we can apply this boundary condition. From equation 9.16 (d), 

2 2
sin ( ) 0j zz

n ca
c ca a

Ej j n
E A n J k e

k k

β
φ ρ

ρ ρ

β β
φ ρ

ρ φ ρ
−

=
= =

∂
= − = =

∂
 

( ) 0n c c nm
a

J k k a p
ρ

ρ
=

⇒ = ⇒ =  

The th
m  zero of ( )

n c
J k ρ  is denoted by 

nm
p  and 

c nm
k a p= . 
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Fig. 9.6 Plot of Bessel’s function of first kind of order 0, 1 and 2 

Table 9.2 Values for 
nm

p  for different values of m (m
th

 zero of the Bessel’s function) 

and n (order of the Bessel’s function) 

n                           m 1 2 

0 2.405 5.520 

1 3.832 7.016 

Now, ( , , ) ( cos ) ( ) j z

z n c
E z A n J k e

βρ φ φ ρ −=  

For other fields components are obtained using equation 9.16. 

2

z

c

Ej
E

k
ρ

β

ρ

∂−
=

∂

' ( )( cos ) j z

n c

c

j
J k A n e

k

ββ
ρ φ −−

=  

2

z

c

Ej
E

k
φ

β

ρ φ

∂
= −

∂ 2
sin ( ) j z

n c

c

j n
A n J k e

k

ββ
φ ρ

ρ
−=  

2

z

c

Ej
H

k
ρ

ωε

ρ φ

∂
=

∂ 2
sin ( ) j z

n c

c

j n
A n J k e

k

βωε
φ ρ

ρ
−= −  
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2

z

c

Ej
H

k
φ

ωε

ρ

∂−
=

∂

'( cos ) ( ) j z

n c

c

j
A n J k e

k

βωε
φ ρ −−

=  

But what we want is 01p , 11p  and so on which are listed in the table 9.2 and they can be 

obtained from Fig. 9.6. 

For 
nm

TM   mode,  

2 2 2 2( )nm
nm c

p
k k k

a
β = − = −   

For cutoff frequency, 
nm

β =0   

1

2

nm
c

p
f

aπ µε
⇒ =  

The TM mode with the lowest cut-off frequency is 01TM  for  01p  since it has the smallest 

value of 2.405 (
01

1 2.405

2
cf

aπ µε
= ). This is not the dominant mode since TE11 has 

lower cut-off frequency than this mode inside circular waveguide. The field expressions 

for E
��

and H
���

 do not exist for m=n=0, hence, there are no 00TM  mode propagating inside 

the circular waveguide.  

The wave impedance is
TE

E
Z

H

ρ

φ

ωµ

β
= = . Guided wavelength is defined as 

2
g

π
λ

β
=  and 

phase velocity is defined as 
ω

β
.  

2 2( )

p

nm

v
p

k
a

ω
=

−

 

Note that c=ω/k. But for the phase velocity inside the waveguide, denominator is a 

smaller number than k. Hence, the phase velocity is greater than the speed of light. This 
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do not Einstein’s law since energy and information flow is dependent on the group 

velocity. Group velocity is defined as 

( )

( ) ( )

2 2

2

2 2 2

2

2 2

1 1

( )

1 1

1 2

( ) 2
( )

g

nm

nm

nm

p

d
v

dd p
d kd a

d

p
d c pc a

c a
d

c c
c

v

ω
ββ
ω

ω

ω
ω

ω

ω

β

ω

= = =
 

− 
 
 

= =
   −      −   

 

= = <

 

Dispersion is of major concern when multi-frequency or broadband signals are 

propagated using a TE or TM mode. These types of signals suffer distortion as they 

propagate along the structure since different components of the signals propagate at 

different velocities. TE and TM waves of different frequencies propagate at different 

velocities and are attenuated at different rates on a waveguiding structure also known as 

dispersion. For instance, the phase velocities of TE/TM waves inside rectangular/circular 

waveguide is given by  

2
2

2

2 2 2 2 2

2

,
2 2

1

1 1 1

mn

mn

mn mn

cc c
c

p

c c c c

fck kck
f f

f k

v
k k k f f

k
k f f

π π

ω ω ω ω

β
ω µε µε

 
= = ∴ = 

 

⇒ = = = = =
−    − − −   

   

∵

 

On the other hand, the phase velocity of TEM waves (such as on a lossless or low-loss 

coaxial cables) are independent of frequency  
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1
pk v

k

ω ω ω
β

β ω µε µε
= ∴ = = = =∵  

Let us summarize what we have learnt in circular waveguides. There are two sets of 

waveguide modes, TE and TM modes that can be guided along a circular waveguide. For 

TE modes, 0
z

E = and ( , , ) ( cos ) ( ) j z

z n c
H z A n J k e

βρ φ φ ρ −= . The other field components 

can be derived using equation (9.16). The boundary conditions require that 0Eφ =  on the 

waveguide walls. Hence, one set of guidance condition is derived as '

c nm
k a p= , where 

'

nm
p  denotes th

m  root of the derivative of the n
th

 order Bessel’s function of first kind 

' ( )
n c

J k ρ . For TEn0 cases, no field exist inside the circular waveguide since there is no 0
th

 

root of the ' ( )
n c

J k ρ  and hence m=1,2,…. The TE mode with '

c nm
k a p=  is denoted as the 

TEnm mode. Most practical circular waveguides operate in the TE11 mode also known as 

the dominant mode with the electric field 12
( )( sin ) j z

c

c

j
E J k A e

k

β
ρ

ωµ
ρ φ

ρ
−=  and 

'

1cos ( ) j z

c

c

j
E A J k e

k

β
φ

ωµ
φ ρ −=  where 

2 21.841
( )k

a
β = − , the cutoff wave number is 

1.841
c

k
a

=  and the cutoff wavelength is 
2

1.841
c

aπ
λ = . Similarly, the TM modes can be 

derived by setting 0
z

H = and ( , , ) ( cos ) ( ) j z

z n c
E z A n J k e

βρ φ φ ρ −= . The other field 

components can be derived using equation (9.16). The same boundary conditions require 

that 0Eφ =  on the waveguide walls. The similar guidance condition is derived as 

c nm
k a p= , where 

nm
p is the th

m  zero of ( )
n c

J k ρ . For TMn0 cases, no field exist inside 

the rectangular waveguide since there is no 0
th

 zero of the ( )
n c

J k ρ  and hence m=1,2,….. 
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The TM mode with 
c nm

k a p=  is denoted as the TMnm mode. The first propagating mode 

is TM01 mode with cut-off frequency of 
01

1 2.405

2
cf

aπ µε
= .  

Example 9.3 

Find the values of (a) 
nm

p for m=1,2,3 and n=0,1,2 (b) '

nm
p for m=1,2,3 and n=0,1,2. 

Solution: 

(a) Let us plot ( )nJ z versus z for n=0,1,2 and the find the value of z for first three 

zero crossings for each ( )nJ z . 

MATLAB program for plotting Fig. 9.6 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all 

clc 

z=0:0.01:10; 

J0=besselj(0,z); %Zero order Bessel function of first kind 

J1=besselj(1,z); %First order Bessel function of first kind 

J2=besselj(2,z);%Second order Bessel function of first kind 

plot(z,J0,'-',z,J1,'--',z,J2,':'); 

legend('Zero','First','Second'); 

xlabel('z'); 

ylabel('Bessel function of first kind') 

grid on; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Values 
nm

p  for m=1,2 and n=0,1 are given in Table 9.2, other values we can 

always find from the graph in Fig. 9.6. 

(b) Let us plot ( )'

nJ z versus z for n=0,1,2 and find the value of z for first three zero 

crossings for each ( )'

nJ z  

MATLAB program for plotting Fig. 9.5 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all 

clc 

z=1:0.01:10; 

dJ0=-besselj(1,z); %derivative of Zero order Bessel function of first kind 

dJ1=(besselj(1,z))./z-besselj(2,z);%derivative of First order Bessel function of 

first kind 

dJ2=(2*besselj(2,z))./z-besselj(3,z);%derivative of Second order Bessel function 

of first kind 

plot(z,dJ0,'-',z,dJ1,'--',z,dJ2,':'); 

legend('Zero','First','Second'); 

xlabel('z'); 

ylabel('Derivative of Bessel function of first kind') 

grid on; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Values of '

nm
p  for m=1,2 and n=0,1 are given in Table 9.1 and other values we can 

always find from the graph in Fig. 9.5. 

Review question 9.20: What is the dominant mode of propagation in circular waveguide? 
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Review question 9.21: Can TE00 and TM00 mode propagate in a circular waveguide? 

Review question 9.22: What is the expression for fcnm, βnm and Znm for TE modes of 

propagation inside circular waveguide? 

Review question 9.23: What is the expression for fcnm, βnm and Znm for TM modes of 

propagation inside circular waveguide? 

Review question 9.24: What is the cut-off frequency for a circular waveguide for (a) 

TM01 and (b) TE11 modes? 

Review question 9.25: What are the field expressions for dominant mode of propagation 

inside circular waveguide? 

Review question 9.26: What is dispersion? Explain in few words. 
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Fig. 9.7 (a) Rectangular cavity (b) Circular cavity 

9.5 Rectangular Cavity Resonator 

What is this rectangular cavity in first place? Rectangular cavity is basically a rectangular 

waveguide of finite length (d) whose two end walls are closed with metals. Since we 

know that perfect metals have reflection coefficient of 1, fields which were propagating 

along z-axis before putting the metal walls at the two ends of the waveguide, will be 
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totally reflected at the two end walls. This reflected field along with the incident field will 

form standing wave patterns and starts resonating. This is the basic idea of rectangular 

cavity resonator. It is basically a closed rectangular metallic box. Then if everything is 

closed, where the signal does comes from. Usually a small hole is created in the side 

walls and signals are excited inside the closed metal box using some techniques which is 

out of the scope of this book. Rectangular cavity is a high quality resonator used for high 

frequency applications. Fig. 9.7 (a) depicts a rectangular waveguide cavity of dimension 

(a×b×d). Vector wave equation for charge free region inside rectangular cavity  

2 2 0E k E∇ + =
� �

 

2 2 0H k H⇒∇ + =
� �

  

This can be further simplified as  

2 2 2
2

2 2 2
0

E E E
k E

x y z

∂ ∂ ∂
+ + + =

∂ ∂ ∂

� � �
�

 

2 2 2
2

2 2 2
0

H H H
k H

x y z

∂ ∂ ∂
⇒ + + + =

∂ ∂ ∂

� � �
�

.  

The above equation can be reduced to three wave equations each for 
x

H ,
y

H and 
z

H . Let 

us consider 
mnl

TE  modes for this cavity ( 0, 0
z z

E H= ≠ ). Hence, we are interested in 

solving the following wave equation 

2 2 2
2

2 2 2
0z z z

z

H H H
k H

x y z

∂ ∂ ∂
+ + + =

∂ ∂ ∂
 

Applying method of separation of variables (assuming ( ) ( ) ( ) ( ), ,zH x y z X x Y y Z z= ) 

2 2 2
2 2

2 2 2

1 1 1X Y Z
k

X x Y y Z z
ω εµ

∂ ∂ ∂
∴ + + = − = −

∂ ∂ ∂
.  
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RHS is a constant and each term in the LHS are independent of each other and can be 

equated to 2 2 2, , ,x y zk k k− − −  respectively. Now the separation equation becomes 

2 2 2 2

x y zk k k k+ + =  

The solution of X, Y and Z are respectively 

 cos sin
x x

X A k x B k x= + , cos sin
y y

Y C k y D k y= + , cos sin
z z

Z F k z G k z= + .  

Applying the boundary conditions on the metal walls of the cavity, we have, 

0,
( , , ) 0

x y b
E x y z

=
= , 

0,
( , , ) 0y x a

E x y z
=

=  and 
0,

( , , ) 0
z z d

H x y z
=

= . The previous two 

boundary conditions are the same as that of the rectangular waveguides. The last 

boundary condition is based on the perfect metal boundary condition for magnetic fields 

as discussed in chapter 4.  

The general expression for   

( , , ) ( cos sin )( cos sin )( cos sin )
z x x y y z z

H x y z XYZ A k x B k x C k y D k y F k z G k z= = + + +  

Applying the boundary condition on the z-component of the magnetic field, we have, 

0,
( , , ) 0

z z d
H x y z

=
=∵ 0,sin 0

z
F k d⇒ = =

z
k d lπ⇒ = . 

Applying the boundary condition on the x-component of the electric field, we have,               

2 2
( , , ) ( cos sin )( cos sin )( sin )

yz
x x x y y z

c c

j kHj
E x y z A k x B k x D k y C k y G k z

k y k

ωµωµ −∂−
= = + −

∂

0,
( , , ) 0 0 sin 0

x yy b
E x y z D and k b

=
= ⇒ = =

y
k b nπ⇒ =  

Applying the boundary condition on the y-component of the electric field, we have,                            

2 2
( , , ) ( cos sin )( cos )( sin )xz

y x x y z

c c

j kHj
E x y z B k x A k x C k y G k z

k x k

ωµωµ ∂
= = −

∂
             

0,
( , , ) 0 0 sin 0y xx a

E x y z B and k a
=

= ⇒ = =
x

k a mπ⇒ =  
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Now we can simplify the above expression for ( , , )
z

H x y z  as follows: 

( , , ) cos cos sin cos cos sin
z x y z x y z

H x y z A k xC k yG k z ACG k x k y k z= =  

Setting ACG=H0, we have, 

0( , , ) cos cos sin
z x y z

H x y z H k x k y k z=  

where 
x

m
k

a

π
=  , 

y

n
k

b

π
= ,

z

l
k

d

π
=  and m, n, l are the integers. 

From the separation equation, 2 2 2 2

x y zk k k k+ + = , we have, 

2 2 21
( ) ( ) ( )

2
r

m n l
f

a b d

π π π

π µε
= + +  

It is customary to chose d>a>b, then the dominant mode is 101TE  mode with cut-off 

frequency 

101

2 21
( ) ( )

2
rf

a d

π π

π µε
= +  

Now let us try to find the expressions for all field components inside the rectangular 

waveguide.  

0 cos cos sin
z x y z

H H k x k y k z=  

All the field components can be expressed in term of  
z

H  from equation (9.13). 

2

c

zz

x
k

H
x

E
y

j

H










∂

∂
−

∂

∂

=

βωε

                                                              (9.13a) 

2

c

zz

y
k

H
y

E
x

j

H










∂

∂
+

∂

∂

−=

βωε

                                                              (9.13b) 
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2

z z

x

c

j E H
x y

E
k

β ωµ
 ∂ ∂

+ 
∂ ∂ = −                                                               (9.13c) 

2

z z

y

c

j E H
y x

E
k

β ωµ
 ∂ ∂

− + 
∂ ∂ =                                                               (9.13d) 

Note that we have substituted 2 2 2

c x yk k k= +  for TE modes. From the above equations and 

noting that 0, 0
z z

E H= ≠ for TE modes, we have, 

02 2 2 2
cos sin sinz

x y x y z

x y x y

H j
E j H k k x k y k z

k k y k k

ωµ ωµ∂
= − = +

+ ∂ +
 

02 2 2 2
sin cos sinz

y x x y z

x y x y

Hj j
E H k k x k y k z

k k x k k

ωµ ωµ∂
= = −

+ ∂ +
 

02 2 2 2
sin cos sinxz

x x y z

x y x y

j kHj
H H k x k y k z

k k x k k

ββ ∂
= − =

+ ∂ +
 

02 2 2 2
cos sin sin

yz
y x y z

x y x y

j kHj
H H k x k y k z

k k y k k

ββ ∂
= − =

+ ∂ +
 

Besides, there is no propagation along z-axis and hence β is not a proper term to use. 

Instead, we should replace it by its more generalized form j
z

β
∂

− =
∂

. Hence, 

( )
2

0 02 2 2

1
sin cos sin sin cos cosx x zz

x x y z x y z

c c c

k k kH
H H k x k y k z H k x k y k z

k z x k z k

∂ ∂
= = − = −

∂ ∂ ∂
 

( )
2

0 02 2 2

1
cos sin sin cos sin cos

y y zz
y x y z x y z

c c c

k k kH
H H k x k y k z H k x k y k z

k z y k z k

∂ ∂
= = − = −

∂ ∂ ∂
 

where 2 2 2, , ,
x y z c x y

m n l
k k k k k k

a b d

π π π
= = = = + .  
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 9.5.1 Quality factor for 101TE  mode: 

Quality factor is the most important parameter of a resonator. In the ensuing section, let 

us calculate Q for 101TE  mode. The field expressions for 101TE  mode are 

0
x z

E E= =  

0 sin sin
y

j aH
E x z

a d

ωµ π π

π
= −  

0 sin cos
x

aH
H x z

d a d

π π
= −  

0
y

H =  

0 cos sin
z

H H x z
a d

π π
=  

The quality factor is defined as  

0
m e

loss

W W
Q

P
ω

+=  

At the resonance, it can be shown that  

m eW W=  

Hence, 

0

2 e

loss

W
Q

P
ω=  

Let us calculate electric energy storage inside the rectangular cavity first. Note that fields 

are time-harmonic functions with sinusoidal variations w.r.t. time and hence its average 

value over a time period will have a half factor.    
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2 2 2' ' '

0 0 0 0 0 0

1 1 1
2
4 2 2

2
a b d a b d

y

volume x y z x y z

e E dv E dxdydz E dxdydzW ε ε ε

= = = = = =

= = =∫ ∫ ∫ ∫ ∫ ∫ ∫
� �

22 2 2
0 0' 2 2

2

0 0 0

1
sin sin

2

a b d

x y z

a H
x zdxdydz
a d

ω µ π π
ε

π
= = =

= ∫ ∫ ∫  

∵
2 2 2

0 0 0

sin , sin , sin
2 2 2

a b d

x y z

a b d
xdx ydy zdz
a b d

π π π

= = =

= = =∫ ∫ ∫  

2 22 2 2 ' 2 2 3
0 0 0 0'

2 2

1

2 2 2 8
2 e

a H Ha d a bd
bW

ω µ εω µ
ε

π π
= =  

Even though we have assumed perfect metals, generally all metals have some inherent 

losses due to finite conductivity of the waveguide metal walls. The power lost in the six 

metallic walls of the rectangular cavity can be calculated as follows. 

� 21

2
s s

walls

loss R J dsP = ∫  

ˆ
s t s

n H J H J× = ⇒ =
� � �

∵  

2

2 2 2

1

2

1 1 1

2 2 2

s t

walls

s t s t s t

front and back walls side walls top and bottom walls

loss R H ds

R H ds R H ds R H ds

P =

= + +

∴ ∫

∫ ∫ ∫

( ) ( )

( ) ( )( )

2 2

0 0 0 0

2 2

0 0

1 1
2 0 2 0

2 2

1
2 0 0

2

a b b d

s x s z

x y y z

a d

s x z

x z

R H z dxdy R H x dydz

R H y H y dxdz

= = = =

= =

= = + =

+ = + =

∫ ∫ ∫ ∫

∫ ∫
 

2 2
0

0

0 0 0 0

2 2
0

0

0 0

sin sin

sin cos cos sin

a b b d

s s

x y y z

a d

s

x z

aH
R x dxdy R H z dydz
d a d

aH
R x z H x z dxdz

d a d a d

π π

π π π π

= = = =

= =

= +

  + − +   

∫ ∫ ∫ ∫

∫ ∫
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2 2
2 20 0
0 0

2 2 4 4
s s s s

aH ab bd aH ad ad
R R H R R H
d d

= + + +  

3 3
2 2 2 2

0 0 0 022 2 4 4
s s s s

a b bd a ad
R H R H R H R H

d d
= + + +  

where 0

2
sR

ωµ

σ
=  is the surface resistivity of metallic walls. 

Therefore the quality factor due to conductor losses is 

2
0

3

' 3 2 ' 3 2 3
0 0

3 3 3 32 2

2 2

2' 2 3
0

2

0 3 3
2 2 2 2

0 0 0 02

8
4 2

4 2
2 2 4 4

8

2 2 4 4

c

s s

s s s s

a bd
a bd

a b bd a ad a b aR R
bd ad

d d d d

H a bd

Q
a b bd a ad

R H R H R H R H
d d

ε ω µ εω µ

π π

εω µ

πω

= =
+ + + + + +

=
+ + +

 

' 3 2 3 3
0
2 3 3 3 34 4 2 2s

a bd

R a b bd a d ad

ε ω µ

π
=

+ + +
 

We could also find the quality factor due to dielectric losses if the cavity is filled with 

some dielectric. Power loss in the dielectric inside rectangular waveguide cavity can be 

calculated as 

2''

0
2

''

0

0 0 0

1

2 2

a b d

volume
d y

x y z

E dv

P E dxdydz

ω ε

ε ω
= = =

= =
∫

∫ ∫ ∫  

2 23 2 2 '' 3 2 3
0 0 0 0'' 2 2

2 2

0 0 0

1
sin sin

2 8

a b d

x y z

a H H a bd
x zdxdydz
a d

ω µ ε ω µπ π
ε

π π
= = =

= =∫ ∫ ∫  

Therefore the quality factor due to dielectric losses inside the rectangular cavity is given 

by 
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2' 3 2 3
0 0

'2

2 '''' 3 2 3
0 0

2

0

18
tan

8

2
d

e

d

H a bd

H a bd

W
Q

P

ε ω µ

επ
ε δε ω µ

π

ω = = ==  

Recall that in chapter 2, we have defined the electric permittivity of a material as 

' ''jε ε ε= −  and 
''

'
tan

ε
δ
ε

= . 

Now that total quality factor can be calculated as 

c d
total

c d

Q Q
Q

Q Q
=

+
 

 

Review question 9.27: How to realize rectangular cavity from rectangular waveguide? 

What is the additional boundary condition for rectangular cavity from the rectangular 

waveguide? 

Review question 9.28: Write down the expression for dominant mode fields inside a 

rectangular cavity. 

Review question 9.29: Write down the expression of resonant frequency and quality 

factor for dominant mode of resonance inside a rectangular cavity.   

 

 

9.6 Circular cavity             

Similar analysis could be carried out for the circular cavity of Fig. 9.7 (b). Let us 

calculate the 
mnl

TE  modes ( 0, 0
z z

E H= ≠ ).   The wave equation in cylindrical coordinate 

system is given by 
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2 2
2

2 2 2

1 1
0z z z

z

H H H
k H

z
ρ

ρ ρ ρ ρ φ

∂ ∂ ∂∂
+ + + =

∂ ∂ ∂ ∂
 

Applying method of separation of variables, let us assume that ( ) ( ) ( )zH R P Z zρ φ= . 

Since R, P and Z are functions of only ρ , φ  and z  respectively, then, the above equation 

reduces to 

2 2
2

2 2 2

1 1 1
( ) 0

R P Z
k

R P Z z
ρ

ρ ρ ρ ρ φ

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
 

Equating the third term in the above equation to a constant 2

z
k− , we have, 

2
2

2
0

z

d Z
k Z

dz
+ =  cos sin

z z
Z A k Z B k Z⇒ = +  

Then the above equation can be reduced to  

2
2 2 2

2 2

1
( ) ( ) 0

z

R P
k k

R P

ρ
ρ ρ

ρ ρ φ

∂ ∂ ∂
+ + − + =

∂ ∂ ∂
 

by multiplying with 2ρ  and substituting 2

z
k−  instead of  

2

2

1 d Z

Z dz
.  

2
2 2

2 2

1
( ) 0

c

R P
k

R P

ρ
ρ ρ

ρ ρ φ

∂ ∂ ∂
+ + =

∂ ∂ ∂
 

In the above equation, we have taken 2 2 2

z c
k k k− = . 

Equating the second term in the above equation to 2
kφ− . 

2
2

2 2
0

P
k Pφ

φ

∂
+ =

∂
cos sinP C k D kφ φφ φ⇒ = +  

But for single valued P, we need to choose kφ  as an integer n.  

cos sinP C n D nφ φ⇒ = +  

Then, 
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2
2 2 2

2
(( ) ) 0

c

R R
k nρ ρ ρ

ρ ρ

∂ ∂
+ + − =

∂ ∂
 

The solution to the above Bessel’s differential equation is given by 

( ) ( )
n c n c

R F J k GY kρ ρ= +  

Note that Y → ∞ , 
c

k ρ → ∞  which is physically not acceptable, choose G=0, then, 

( )
n c

R FJ k ρ=  

The expression for the longitudinal component of the electric field is 

( )( , , ) ( )( cos sin ) cos sinz n c z zH z RPZ FJ k C n D n A k Z B k Zρ φ ρ φ φ= = + +  

Applying the boundary conditions 0
z

H =   at 0,z d= , we get,  

A=0, sin 0
z z

k d k d lπ= ⇒ = , l is a positive integer  

Another boundary condition is that 0Eφ =  at aρ = . 

0z
H

ρ

∂
⇒ =

∂
 at aρ =  

' '( ) 0
n c nm c

J k a p k a⇒ = ⇒ =  

where '

nm
p  are the m

th
 roots of the first derivative of n

th
 order Bessel’s function of first 

kind. 

The expression for the longitudinal component of the electric field is 

( , , ) ( )( cos sin ) sin
z n c z

H z FJ k C n D n B k zρ φ ρ φ φ= +  

One of the two terms of P can be eliminated. Both have to the same field pattern except 

for a rotation of   090  in the φ  direction. Also the excitation can be chosen in such a way 

that only one term can exist at any time. Setting D=0, we can further simplify the above 

expression as  
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0( , , ) ( )( cos ) sin (cos ) ( )sin
z n c z n c z

H z FJ k C n B k z H n J k k zρ φ ρ φ φ ρ= =  

 

We can obtain the other components of electric and magnetic fields from the longitudinal 

components using the equations listed below. 

2

z z

c

j E H

H
k

ρ

ωε
β

ρ φ ρ

 ∂ ∂
− ∂ ∂ =                                                               (9.16a) 

2

z z

c

j E H

H
k

φ

β
ωε

ρ ρ φ

 ∂ ∂
+ ∂ ∂ = −                                                               (9.16b) 

2

z z

c

j E H

E
k

ρ

ωµ
β

ρ ρ φ

 ∂ ∂
+ ∂ ∂ = −                                                               (9.16c) 

2

z z

c

j E H

E
k

φ

β
ωµ

ρ φ ρ

 ∂ ∂
− + ∂ ∂ =                                                               (9.16d) 

Note that  

2
'

2 nm
c

p
k

a

 
=  
 

 

From the above equations and noting that 0, 0
z z

E H= ≠ for TE modes, we have, 

2

z

c

j H

H
k

ρ

β
ρ

∂

∂
= −  

2

z

c

j
H

H
k

φ

β

ρ φ

∂

∂
= −  

2

z

c

j H

E
k

ρ

ωµ

ρ φ

∂

∂
= −  
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2

z

c

j H

E
k

φ

ωµ
ρ

∂

∂
=  

Besides, there is no propagation along z-axis and hence β is not a proper term to use. 

Instead, we should replace it by its more generalized form j
z

β
∂

− =
∂

. Hence, 

2
'0

2 2

1
(cos ) ( )cosz cz

n c z

c c

H k kH
H n J k k z

k z k
ρ φ ρ

ρ

∂
= =

∂ ∂
 

2

0

2 2

1
(sin ) ( )coszz

n c z

c c

H nkH
H n J k k z

k z k
φ φ ρ

ρ φ ρ

∂
= =

∂ ∂
 

0

2 2
(sin ) ( )sinz n c z

c c

j H nj
E H n J k k z

k k
ρ

ωµωµ
φ ρ

ρ φ ρ

∂
= − =

∂
 

'0

2 2
(cos ) ( )sinc

z n c z

c c

j H kj
E H n J k k z

k k
φ

ωµωµ
φ ρ

ρ

∂
= =

∂
 

where 2 2 2, , ,
x y z c x y

m n l
k k k k k k

a b d

π π π
= = = = + .  

Therefore, the resonant frequency for the  
nml

TE  modes inside the cylindrical cavity is 

given by  

22 '
1

2

nm
r

pl
f

d a

π

π µε

  
= +   

   
 

Even though 111TE  is the dominant resonant mode inside the cylindrical cavity, the  011TE  

cylindrical cavity mode is of considerable interest since for an air–filled cavity, the 

unbounded Q for this mode can be as high as approximately 20,000 to 60,000. 

9.6.1 Quality factor for 011TE  mode: 
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Quality factor is the most important parameter of a resonator. In the ensuing section, let 

us calculate Q for 011TE  mode. The field expressions for 011TE  mode are 

'

01
0 0( , , ) ( )sin

z

p
H z H J z

a d

π
ρ φ ρ=  

'
'0 01
0'

01

( ) cos
H a p

H J z
p d a d

ρ

π π
ρ=  

0Hφ =  

0 zE Eρ = =  

'0
0'

01

( )sinc

j H a
E J k z

p d
φ

ωµ π
ρ=  

The quality factor is defined as  

0
m e

loss

W W
Q

P
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Therefore the quality factor due to dielectric losses inside the circular cavity is the same 

as that of the rectangular cavity and it is given by 
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In order to calculate the quality factor due to losses in the waveguide walls, let us 

calculate the electric energy storage. 
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Even though we have assumed perfect metals, generally all metals have some inherent 

losses due to finite conductivity of the waveguide metal walls. The power lost in the three 

metallic walls of the circular cavity can be calculated as follows. 
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where 0

2
sR

ωµ

σ
=  is the surface resistivity of metallic walls. 

Therefore the quality factor due to conductor losses is 
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Now that total quality factor can be calculated as 

c d
total

c d

Q Q
Q

Q Q
=

+
 

9.7 Rectangular microstrip antenna: 

Before, we go into analysis of rectangular microstrip antenna (cavity model), let us try to 

understand some fundamentals of microstrip antenna (MSA).  How does a MSA looks 

like? MSA is a conducting strip of metal printed on a dielectric substrate, which is 

situated above a ground plane as depicted in Fig. 9.8(a). The RMSA consists of a ground 

plane, a dielectric substrate and a rectangular patch. Although RMSA and circular 
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microstrip antenna (CMSA) are most popular MSAs, other shapes such as square, 

triangular, semicircular, sectoral and annular ring are also used. We will be discussing 

only RMSA and CMSA in this chapter. The antenna is usually fed by a coaxial cable as 

shown in Fig. 9.8(b). MSAs have several advantages over other conventional microwave 

antennas: lightweight and have a small volume and low profile, conformable to various 

host surfaces, inexpensive and easy to fabricate using printed-circuit technology, 

compatible with monolithic microwave integrated circuit (MMIC), versatile for 

polarization (allow both linear and circular polarizations), versatile for resonant 

frequency (allow for dual, triple and other multiple frequency operations), compact for 

use in personal mobile communications and so on. 

 

θ

φ

 

Fig. 9.8 (a) Front view and (b) Side view of rectangular microstrip antenna (RMSA) 
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MSAs also suffer from some disadvantages compared to other conventional microwave 

antennas: narrow bandwidth (it is no more a disadvantage for MSA since there are 

various methods to improve its bandwidth), low gain (MSA arrays can be employed for 

improving the gain), low power handling capacity, high Q, poor polarization purity, 

spurious feed radiations, lower efficiency (efficiency is affected by conductor, dielectric 

and surface wave losses) etc. MSAs are widely used in wireless communications 

nowadays. Some of the possible applications of MSAs are: (a) telemetry & 

communication antennas on missiles need to be thin & conformal, MSA can be used (b) 

antennas for mobile & satellite communications (c) MSA arrays for satellite imaging 

systems (d) Global System for Mobile Communication (GSM) (e) Global Positioning 

System (GPS) (f) Communication links between ships & satellites, etc. There are 

basically two commonly used feeding techniques for MSA: (a) Microstrip feed line: 

Microstrip feed line is also a conducting strip usually of much smaller width compared to 

the patch as shown in Fig. 9.9(a). The microstrip feed line is easy to fabricate, simple to 

match by controlling the inset position and rather simple to model. However as the 

substrate thickness increases surface waves and spurious feed radiation increases. The 

width of microstrip line and substrate parameters decides the characteristic impedance of 

the microstrip line. (b) Coaxial feed line: Coaxial-line feeds, where the inner conductor of 

the coax is attached to the radiation patch while the outer conductor is connected to the 

ground plane are also widely used as depicted in Fig. 9.8(b). The coaxial probe feed is 

also easy to fabricate and match, and it has low spurious radiation. However, it also has 

narrow bandwidth and it is more difficult to model, especially for thick substrates. The 
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characteristic impedance of the coaxial cable is mainly dependent on the radius of the 

inner and outer conductor of the coaxial cable as described at the start of this chapter. 

There are other feeding techniques like electromagnetic coupled feed lines, aperture 

coupled feed lines, broadband tapered feed lines, etc. which gives broader BW.   

Review question 9.30: Explain the structure of MSA. 

Review question 9.31: List the advantages and disadvantages of MSA. 

Review question 9.32: State some of the applications of MSA. 

Review question 9.33: State the two basic feeding methods for MSA and explain them 

with the help of a diagram. 

There are two methods for analysis of RMSA. First is the cavity model. It is applicable 

for only thin substrates (h<<λ) and it can analyze simple structures like RMSA, CMSA, 

annular-ring (ARMSA), equitriangular (ETMSA) patches. Second and more rigorous 

method is full-wave analysis based on Method of Moments (MoM)/ Finite Difference 

Time Domain (FDTD). It is applicable for thicker substrate and other complicated 

structures like multilayered patches. We will not discuss this method as it is more 

involved. Instead, we will discuss the cavity model since it gives better understanding of 

the patch antennas based on its structure and boundary conditions.   

9.7.1 Cavity model of RMSA 

        The volume beneath the patch and the ground plane can be treated as a rectangular 

cavity loaded with a dielectric with dielectric constant of εr (see Fig. 9.9 (b)). The 

dielectric material of the substrate is assumed to be truncated beyond the edges of patch. 

This volume looks like the rectangular cavity excited by a coaxial cable. Note some 

difference between rectangular cavity and the RMSA. In cavity, it was a closed box with 
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six metal walls. In RMSA, the top and bottom walls are metallic walls, whereas, the four 

side walls are kept open. This gives the chance to the fields inside the cavity to come out 

of the cavity and hence radiation of fields to outside the RMSA is made possible. If the 

antenna is excited at a resonant frequency, a strong field is set up inside the cavity and a 

strong current on the lower surface of the patch which gives rise to a strong radiation. We 

know that metallic walls are electric walls since the tangential component of the electric 

field is zero on those walls. What boundary conditions can we expect on the four side 

walls of the RMSA cavity? Some assumptions: 

(a) The field in the interior region do not vary with z since the substrate is very thin 

(h<<λ) and hence 0
z

∂
≡

∂
. 

(b) The electric field is z-directed only, and the magnetic field 

( ( )
1 1

ˆ
z

H E zE
j jωµ ωµ

 = − ∇× = − ∇× 
� �

∵

( )
1 1 1

ˆ ˆ ˆ ˆ
z z z z

E z E z E z z E
j j jωµ ωµ ωµ

 = − ∇× + ∇ × = − ∇ × = ×∇   from Maxwell’s 

curl equation and example 1.3) has only the transverse components in the region 

bounded by the patch and ground plane. That’s why we have electric walls at the 

top and bottom (tangential components of the electric field are zero). 

Note the relation between the magnetic field and the surface current density on 

the lower surface of the patch ( ˆ
s

J z H= − ×
� �

). The electric current in the patch 

boundary perimeter has no component normal to the edge of the patch 

( ( ) ( )ˆ ˆ ˆ ˆˆ ˆ0 0
s s t

n J n J n z H H n z H• = ⇒ • = • − × = − • × = =
� � � �

), which means the 

tangential component of the magnetic field is negligible along the side walls since 
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the magnetic field is approximately independent of z inside the cavity (only 

normal component of the magnetic fields exist on the four side walls) or magnetic 

walls (walls in which tangential components of the magnetic field are zero).  

The field regions may be divided into two: interior and exterior. Hence, the interior 

region of the patch is modeled as a cavity bounded by electric walls at the top and 

bottom, and a magnetic wall all along the four side walls. From our knowledge in EM 

theory (refer to chapter 8), the magnetic vector potential should satisfy the wave equation 

in the interior region of the cavity.  

2 2 0A k A∇ + =
� �

 

For the TMz mode fields (since magnetic field has only x- and y- components inside the 

cavity, magnetic vector potential should have only z component), we have, 

ˆ
z

A A z=
�

 

2 2 0
z z

A k A⇒∇ + =  

Applying the method of separation of variables, Az takes the form, 

1 1 2 2 3 3( cos sin )( cos sin )( cos sin )
z x x y y z z

A A k x B k x A k y B k y A k z B k z= + + +  

Note that 

B H Aµ= = ∇×
�� �
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Hence, 
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Applying boundary conditions, 

0,
0

x z h
E

=
=  (ground plane and metal patch are electric walls, note that Ey is also the 

tangential component of the electric field in these two walls, we can also apply the 

boundary condition for this as well and it will give the same result),
0,

0
y x L

H
=

=  (front 
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and back walls are magnetic walls, Hz is also the tangential component of the magnetic 

field, but it is zero for TM fields),
0,

0
x y W

H
=

=  (side walls are magnetic walls, Hz is also 

the tangential component of the magnetic field, but it is zero for TM fields) 

30,
0 0

x zz h
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= ⇒ = =  

10,
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20,
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where 0m n p= = ≠  and , , 0,1,2,...m n p =  

Now we can write 

cos cos cos
z mnp x y z

A A k x k y k z=  

Therefore, the field expressions may be simplified as follows: 
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We can find the resonant frequency for TMmnp modes inside the rectangular cavity as 

follows. 

2 2 2
1

2
r mnp

m n p
f

L W h

π π π

π µε

     
⇒ = + +     

     
 

Dominant mode for L>W>h is 100TM mode and has the resonant frequency 

100

1
( )

2
rf

L µε
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For this dominant mode, the field expressions are 

0
x

H =  
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In addition L>W>L/2>h, the next higher mode is 010

1
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2
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= . If however 

L>L/2>W>h the second dominant mode is the 200

z
TM  mode whose resonant frequency is 

given by 200

1
( )rf

L µε
= .  
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Fig. 9.9 (a) Microstrip fed RMSA (b) Cavity model of RMSA (c) Top view of CMSA (d) 

Cavity model of CMSA 
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Fig. 9.10 (a) E-field distributions (b) Voltage and Current distributions (c) Radiating 

Slots and (d) Equivalent transmission line model for the dominant mode of RMSA  

 

9.7.2 Design of RMSA 

(a) Design formulae 
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• For an RMSA to be an efficient radiator, W should be taken equal to a half 

wavelength corresponding to the average of the two dielectric mediums (i.e., 

substrate and air). 

0

1
2

2
r

c
W

f
ε

=
+

 

where f0 is the resonant frequency of  the MSA, εr is the relative dielectric 

constant of the substrate. 

W is usually chosen larger than L for higher bandwidth, but it should be less than 

2L. 

• The value of 
e

ε is slightly less than 
r

ε , because the fringing fields around the 

periphery of the patch are not confined in the dielectric substrate but are also 

spread in the air as shown in Fig. 9. 10 (a).  

1 1

2 12
2 1

r r
e

h

W

ε ε
ε

+ −
= +

+

 

• Due to the fringing fields at the two edges, the effective length of the RMSA in 

Fig. 9.10 (c) is given by 

0

2
2

e

e

c
L L L

f ε
= + ∆ =  

• Because of the fringing effects, electrically the patch of the MSA looks greater 

than its physical dimension (extension of L∆  on both sides). A very practical 

approximate relation for the normalized extension of the length is given by 
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( 0.3)( 0.264)

0.412
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− +

 

where h is the thickness of the substrate and it is assumed to be much smaller than 

the dimensions of the antenna. 

For the two types of feeding techniques, we need to locate the position x where 

the impedance of the antenna is equal to 50 Ohms since most of the coaxial cables 

has an impedance of 50 Ohms. For microstrip feed lines of MSA, we need to 

choose the width of the microstrip lines (Wm) accordingly. 
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In the above equation, Z0 is usually chosen as 50 Ohms, h and εr are fixed for a  

particular substrate. 

After calculation of the dimensions of the patch, the design process is continued 

with the matching of the antenna resistance to 50 Ohm of the input line. For 

impedance matching with the microstrip feed line, inset feeding technique is 

generally used. Position of the inset feed point is calculated as follows: 

• Antenna impedance and feed location: Along the width of the patch, voltage is 

maximum and current is minimum due to the open end as shown in Fig. 9.10 (b). 

Hence the value of resistance of the antenna is maximum at the edges and zero at 
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the center of the patch. Coaxial feed is placed in the middle of the width to avoid 

excitation of the orthogonal higher order TM010 mode and cross-polarization. For 

a given mode, it can be shown that the resonant input impedance (Rin) of a RMSA 

is directly proportional to the square of the cavity mode electric field at the feed 

point. For the dominant TM100 mode of the RMSA, 
2

2

1
(cos )

z mnp
E A x

j L L

π π

ωε µ
= . 

For coaxial feed at a distance x1 from the edge towards the center as shown in Fig. 

9.8 (a), the input impedance of the RMSA for the dominant TM100 mode at 

resonance for can be approximately calculated as: 

2 1cos ( )
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r m
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2
, + sign is usually chosen due to the odd field distribution  

between the radiating slots for the dominant TM100 mode. 

m
G is the mutual conductance which accounts for mutual coupling between the 

two slots and is given by 
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But it has been observed experimentally that 4
th

 square law gives a better and accurate 

position of the feed point. Hence, 

4 1cos ( )
in e

x
R R

L

π
=  for 10 / 2x L≤ ≤  

We will use the 4
th

 square law in our design of RMSA. In the above formula, Re is the 

resonant resistance of the patch antenna (at the edge) and Rin is the required input 

resistance, which is 50 Ohm for this case. Note that the antenna resistance (Rin) is 

highest at the edge and lowest at the center. The inset feed point x1 along the length is a 

point in between the edge and center of the patch antenna. The feed point location is 

chosen at the mid-point of the width of the patch antenna to avoid higher order mode 

excitations and for polarization purity. 

Design steps for RMSA: 

• Given εr, h in cm, fr in Hz 

• Determine L and W of the patch 

• Find W, εeff, ∆L, Le and L=Le-2∆L 

• Find the width of the microstrip feed line 

• Find the feed location 

Review question 9.34: Write down the steps for designing RMSA. 

Example 9.4 

Write a MATLAB program to design RMSA. 

It should prompt for the following inputs. 

Enter the resonant frequency in GHz: 

Enter the dielectric constant of the substrate: 

Enter the thickness of the substrate: 
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Enter the characteristic impedance needed for the microstrip transmission line: 

It should give the following outputs: 

Ereff = 

Width_microstrip_line = 

W_Patch = 

L_Patch = 

Inset = 

Solution: 

% The following program computes some important parameters of a rectangular 

% microstrip  patch antenna 

%The inputs to the program are the thickness of the substrate h , the 

%desired resonant frequency fr, the characteristic impedance of the microstrip feedline, 

%the dielectric constant of the substrate Er.The layout is shown below.It uses inset feed 

%                

% 

%                              <----------      L     -------------> 

%                                                           

%                             ___________________       

%              |             |                                           ____|      |      Feed  microstrip 

%              |             |                                          |______|____________ 

%              |             |                                                                                                  | 

%              W          |                                                          W0                                 | 

%              |             |                                            __________________|         
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%              |             |                                          |_____       

%              |             |___________________| 

%                                                                         <------> 

%                                                                              y0 

clear all; 

% warning off MATLAB:divideByZero; 

fr1=input('Enter the resonant frequency in GHz : '); 

Er=input('\n Enter the dielectric constant of the substrate : '); 

h1=input('\n Enter the thickness of the substrate in mm : ') 

Zc=input('\n Enter the characteristic impedance needed for the microstrip transmission 

line: ') 

fr=fr1*1e9; 

h=h1*1e-3; 

% Velocity of light in vacuum 

c0=299792458; 

%Wavelength in free space Lambda 

Lambda0=c0/fr; 

% Free space wave impedance 

Z0=120*pi; 

%Determining the width of the microstrip transmission line needed 

    A=(pi*sqrt(2*(Er+1)))*(Zc/Z0)+((Er-1)/(Er+1))*(0.23+0.11/Er); 

    ratio1=4/(0.5*exp(A)-exp(-A)); 

    B=(pi/(2*sqrt(Er)))*(Z0/Zc); 
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    ratio2=((Er-1)/(pi*Er))*(log(B-1)+0.39-0.61/Er)+(2/pi)*(B-1-log(2*B-1)); 

    if ratio1 <= 2  

        ratio = ratio1; 

    else ratio = ratio2; 

    end 

    W_tln=h*ratio; 

% Width of the patch 

W=(c0/(2*fr))*sqrt(2/(Er+1)); 

% The effective dielectric constant 

Ereff=(Er+1)/2+((Er-1)/2)*(power((1+12*h/W),-0.5)); 

% Wavelength in effective medium 

Lambda=Lambda0/sqrt(Ereff); 

% Speed of light in effective medium  

c=c0/sqrt(Ereff); 

%Length of microstrip TLN for a 360 degree phase shift 

L_tln=Lambda 

% The correction of length delL due to the fringing 

delL=0.412*h*((Ereff+0.3)*(W/h+0.264))/((Ereff-0.258)*(W/h+0.8)); 

% Correct length needed 

L=Lambda/2-2*delL; 

%The feed  inset required 

% Calculation of the conductance 

 k0=2*pi/Lambda0; 
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 X=k0*W; 

%Calculation of the integral of sin(x)/x 

 syms t; 

 f=sin(t)./t; 

 SiX=quadl(inline('f'),eps,X); 

 I1=-2+cos(X)+sin(X)./X+X*SiX; 

 G1= I1/(120*(pi^2)); 

Rin0=1/(2*G1); 

% Use cos^4 dependence  

y0=(L/pi)*acos((power((Zc/Rin0),0.25))); 

disp('All the values are in microns'); 

Ereff 

Width_microstrip_line=W_tln/1e-6 

W_Patch=W/1e-6 

L_Patch=L/1e-6 

Inset=y0/1e-6 

Example 9.5 

Show that for an RMSA, ( )2

1cosin eR R xβ=  for the dominant mode of operation where 

Rin is the input resistance of the antenna at the feed point x1 and Re is the edge resistance 

of the RMSA. 

Solution: 

Using the Transmission line model of RMSA (Fig. 9.10 (d)) and assuming that the two 

slots are identical ( )1 1 2 2G jB G jB G jB+ = + = + , we have, 
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( )
( ) ( )

( )( )
( ) ( )( )

0 10 1

0 0

0 1 0 1

tantan

tan tan
in

G jB jY L xG jB jY x
Y Y Y

Y j G jB x Y j G jB L x

ββ

β β

+ + −+ +
= +

+ + + + −
 

Also note that the length of the RMSA is approximately half the guided wavelength 

( )Lβ π=  at the resonant frequency, hence, 

( )
( ) ( )

( )
( ) ( )

0 1 0 1

0 0

0 1 0 1

tan tan

tan tan
in

G jB jY x G jB jY x
Y Y Y

Y j G jB x Y j G jB x

β β

β β

+ + + −
= +

+ + − +
 

( ) ( ) ( )

( ) ( )

2 2 2

0 0 1

22 2

0 1

2 2 tan

tan

G jB Y Y G jB x

Y G jB x

β

β

+ + +
=

+ +
 

( ) ( ) ( )

( )
( )

2

1

2

2

12

0

2 2 tan

1 tan

G jB G jB x

G jB
x

Y

β

β

+ + +
=

+
+

 

Since the microstrip patch is a microstrip line of large width, it will have a very low 

characteristic impedance and hence, a high characteristic admittance.  

( ) ( ) ( )2

12 2 taninY G jB G jB xβ≅ + + +
( )

( )2

1

2

cos

G jB

xβ

+
=  

Now let us find the edge resistance (x1=0). 

( )0 0

0 0

2
e

G jB G jB
Y Y Y G jB

Y Y

+ +
= + = +  

Therefore, 

( )2

1cosin eR R xβ=  

 

9.7 Circular Microstrip Antenna                 

9.7.1 Design of CMSA 
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(a) Introduction 

The next most popular MSA is CMSA. It can be used as a single element or in arrays. 

The modes supported by the CMSA can be found by treating the patch, ground plane and 

the substrate between the two as a circular cavity. The cavity is composed of two perfect 

electric conductors in the top and bottom to represent the patch and the ground plane and 

by a cylindrical perfect magnetic conductor around the circular periphery of the cavity (to 

model an open circuit). For the CMSA there is only one degree of freedom to control 

(radius of the patch). Changing the radius doesn’t change the order of modes however it 

changes the resonant frequency of the patch. 

(b) Resonant frequencies 

The resonant frequencies of the CMSA can be obtained using the formula: 

f
X c

a
r

r

nm=
'

2π ε
  

where '

nm
X  is the m

th
 root of the derivative of the Bessel function of order n. For the 

dominant TM11 the resonant frequency is given by 

f
c

a
r

r

=
18412

2

.

π ε
 

The resonant frequency doesn’t take into account fringing. Fringing makes the patch look 

electrically larger and hence the effective radius ae should replace the a in the previous 

equation. The relation between the a and ae is as follows: 

1/ 2

1/ 2

2
1 ln 1.7726

2 2
1 ln 1.7726

2

e
e

r

r

ah a
a a a

a h h a

a h

π

π ε π

π ε

   
= + + ⇒ =   

        
+ +   

   

 

Therefore the resonant frequency for the dominant mode should be expressed as 
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91.8412 8.791 10

2
r e

e r r r

c
f a cm

a fπ ε ε

×
= ⇒ =  

(c) Procedures for design of CMSA 

• Given εr, h in cm, fr in Hz 

• Determine actual radius a of the patch, use the following relation: 

9

1/ 2

8.791 10
;

2
1 ln 1.7726

2

e
e

r r

r

a
a a

fh a

a h

επ

π ε

×
= =
   

+ +   
   

 

Remember that h must be in cm. In the first iteration, choose a in the 

denominator of the above equation equal to ae, then in the other iterations use 

the value a from the previous iteration and in the numerator is always the 

value of ae. Continue the iteration till you get a value of a, which is 

convergent.  

 

 (d) Feed location 

The fields of the TM11 mode produce a virtual short circuit at the center of the patch. 

Experience shows that the 50 Ohm feed line is located from the center at about one-third 

of the radius. The radial line along which the feed is located determines the direction of 

the linear polarization. Derneryd gives an approximate expression for the radial 

impedance variation: 

( )
( )

R R
J k

J k a
in e=

1

2

1

2

ε

ε

ρ
 

where Re is the edge resistance, ρ is the radial distance and J1 is the Bessel function of 
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the first kind, k k rε ε= . The edge resistance for dominant mode m=1 can be 

calculated using the following equation: 

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( )

2
/ 2

0 2 2 2

0 0
0

1 1 1 1

3/ 2

20 2

2

2 2

0

1 1

sin cos sin sin ;
480

;

4

tan

4

e

t rad c d

e

rad P M

P m m M m m

r

c e

d e

r

R
G G G G

where

k a
G B k a B k a d

B x J x J x B x J x J x

f
G ka m

h

G ka m
hf

π

θ θ θ θ θ

π πµ

σ

δ

µ

− + − +

−

= =
+ +

 = + 

= + = −

 = −
 

 = −
 

∫
 

As usual the contribution from the first term is the major, other two terms may be 

neglected in our analysis. 

 

Review Question 9.35: Write down the steps for designing CMSA. 

 

9.7.2 Cavity Model of CMSA 

         The modes supported by the circular patch antenna can be found by treating the 

region between the circular patch and the ground plane as a circular cavity as in the case 

of RMSA (see Fig. 9.9 (d)). The modes that are supported by a CMSA, whose substrate 

height is small, is zTM where ‘z’ is taken perpendicular to the patch. The cavity is 

composed of two perfect electric conductors at the top and bottom to represent the patch 

and the ground plane and by a cylindrical perfect magnetic conductor around the 

cylindrical side walls of the cavity. The dielectric material of the substrate is assumed to 

be truncated beyond the extent of the patch. The vector wave equation to be solved is 
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simplified to 2 2 0
z z

A k A∇ + =  subjected to boundary conditions
0,

0
z h

Eρ =
=  

and 0
a

Hφ ρ =
= . Applying the method of separation of variables like in the case of 

cylindrical cavity, we can get the solution of the wave equation as follows: 

1 1 2 2 3 3( ( ) ( ))( cos sin )( cos sin )
z n c n c z z

A A J k B Y k A k B k A k z B k zφ φρ ρ φ φ= + + +   

Since, Y → ∞ as 
c

k ρ → ∞  which is physically not acceptable, so, we should choose 

B1=0. 

1 2 2 3 3( ( ))( cos sin )( cos sin )
z n c z z

A A J k A k B k A k z B k zφ φρ φ φ= + +   

We also have the standard relation between the magnetic field intensity, magnetic flux 

density and magnetic vector potential as 

B H Aµ= = ∇×
�� �

 

ˆˆ ˆ

1ˆˆ ˆ
z

z

z

H H H z
z

A A A

ρ φ

ρ φ

ρ ρφ

ρ φ
µρ ρ φ

ρ

∂ ∂ ∂
⇒ + + =

∂ ∂ ∂
          

For this case, Aρ =0 and Aφρ =0, hence, 

1
z

A
Hρ

ρµ φ

∂
=

∂
,  

1
z

A
Hφ

µ ρ

∂
= −

∂
,  

0
z

H =  

Also from the Maxwell curl equation, we have, 

H j Eωε∇× =
� �
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ˆˆ ˆ

1 ˆˆ ˆ( )

0

z

z

j E E E z
z

H H

ρ φ

ρ φ

ρ ρφ

ωε ρ φ
ρ ρ φ

∂ ∂ ∂
⇒ = + +

∂ ∂ ∂
 

Equating the three vector components of the above equation, we can get the expressions 

of electric field components in terms of magnetic field components which could be 

further expressed in terms of magnetic vector potential Az as follows.   

21 1
z

H A
j E E

z j z

φ

ρ ρωε
ρ ωεµρ ρ

∂ ∂
⇒ − = ⇒ =

∂ ∂ ∂
;

21
z

H A
j E E

z j z

φ

φ φωε
ωεµρ φ

∂ ∂
= ⇒ =

∂ ∂ ∂
; 

2 2

2 2 2

1 1
( ) ( )

z z z

H H
j E E A

j

φ ρ ωε
ρ ρ φ ρ ωεµ ρ φ

∂ ∂ ∂ ∂
− = ⇒ = − +

∂ ∂ ∂ ∂
 

Now applying the two boundary conditions, we get,  

(a)
0,

0
z h

Eρ =
=  3 0A⇒ = , 

z

l
k

h

π
=  

(b) 0
a

Hφ ρ =
= , ' ( ) 0

n c
J k ρ⇒ = , '

c mn
k a p=  

Some typical values of the roots of the differentiation of the n
th

 order Bessel’s functions 

of the first kind are '

11 1.8412p = , '

21 3.054p = , '

01 3.8318p = and '

31 4.2012p = . 

Note that kφ  is an integer i.e., k nφ =  in order to have single valued P. Hence, using the 

above two conditions, we can further simplify the expression for Az as follows. 

1 2 2 3( )( cos sin ) cos
z n c z

A A J k A n B n A k zρ φ φ= +  

Neglecting the second term of 2 2( cos sin )A n B nφ φ+ , we have, 

( )(cos )cos
z mnp n c z

A A J k n k zρ φ=  

In the above equation, we have assumed that the multiplication of three arbitrary 

constants ( )1 2 3A A A× × is equal to a new arbitrary constant ( )mnp
A .   
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Also we have, 2 2 2 2

c z r
k k k ω µε+ = = . From this relation, we can find the resonant 

frequency for various TMmn0 modes inside the CMSA as follows: 

'
1

( ) ( )
2

mn
r mn

p
f

aπ µε
=  

A particular case of the above expression is for TMmn0 mode inside CMSA is 

110

1.8412
( )

2
rf

aπ µε
= . 

We may also calculate the quality factor of RMSA and CMSA due to conductor and 

dielectric losses. The process to obtain Q is quite similar to that of rectangular and 

circular cavity. This is left as an exercise for the readers (see Exercise 9.9 and 9.10). 

Besides, we could also obtain the far field radiation fields from the cavity fields. This is 

out of scope of this book. The readers may refer to any of the book on microstrip antenna 

mentioned in the references. 

9.8 Summary                 

In this chapter, we have studied three disparate topics viz. waveguide, cavity and 

micrsotrip antenna. But we have observed that the analysis of rectangular waveguide, 

rectangular cavity and rectangular micrsotrip antenna is quite similar (only the boundary 

conditions change). Similarly, the analysis of circular waveguide, circular cavity and 

circular micrsotrip antenna is almost the same (only the boundary conditions change). In 

fact, the analysis of rectangular waveguide and circular waveguide, rectangular cavity 

and circular cavity and rectangular microstrip antenna and circular microstrip antenna is 

basically same except for the change in the coordinate system from the Cartesian 

coordinate system to Cylindrical coordinate system. Hence, if we know how to analyze, 
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any one of the above devices/structures, we can always do the analysis of the remaining 

devices/structures in a similar way. That is the idea behind clubbing together three 

disparate topics under one chapter.  

Exercises 

Exercise 9.1  

How to obtain vector wave equations from the two Maxwell’s curl equations? 

Exercise 9.2 

What is the wave equation inside rectangular waveguide? 

Exercise 9.3 

What is the wave equation inside circular waveguide? 

Exercise 9.4  

How to obtain other transversal components of E
�

 and  H
�

 fields (say Ex, Ey, Hx, Hy) 

from the longitudinal components (say Ez, Hz)? 

Exercise 9.5    

How to obtain the transversal components Eρ , Eφ , Hρ , Hφ  in cylindrical coordinates 

when  longitudinal components of electric and magnetic fields 
z

E ,
z

H  are given? 

Exercise 9.6    

Find the first three propagating modes of a hollow circular waveguide of radius 0.5 cm.  

Exercise 9.7  

Design a RMSA using FR4 substrate with dielectric constant of 4.4 and h=1.6mm so as 

to resonate at 2.4 GHz for WLAN applications. Find 

(a) the input impedance  

(b) the position of the inset feed-point where the input impedance is 50 Ohms  
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(c) the width of 50 Ohms microstrip feed line 

Exercise 9.8  

Design a CMSA using FR4 substrate with dielectric constant of 4.4 and h=1.6mm so as 

to resonate at 900 MHz for GSM mobile communications. Find   

(a) the input impedance  

(b) the position of the feed-point where the input impedance is 50 Ohms  

Exercise 9.9    

Find the quality factor due to conductor and dielectric loss of a RMSA for the dominant 

mode of operation.  

Exercise 9.10    

Find the quality factor due to conductor and dielectric loss of a CMSA for the dominant 

mode of operation.  

 


